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Abstract

This paper develops a dynamic spatial general equilibrium model of a multi-region multi-sector
open economy in which heterogeneous agents choose optimally where to locate and work, by
making forward-looking decisions under aggregate uncertainty about future realizations of
economic fundamentals and idiosyncratic risk of aging. To address the role of aggregate
uncertainty in interaction with spatial determinants of the equilibrium, we solve the system of
individual dynamic optimal-control problems under rational expectations as a Mean Field Game, in
discrete time, over the discrete state space, preserving the full non-linear structure of the problem.
With a calibration for France, we demonstrate that households behave substantially differently
between uncertainty and perfect foresight. By affecting the continuation value of jobs -- differently
by location and age -- uncertainty alters the patterns of labor reallocation in transition as well as in
the long run. The impact of uncertainty alone on individual lifetime welfare is negative on average,
but it triggers heterogeneous welfare changes: substantial portions of the population lose much
more than the average (are stuck in less attractive jobs) while some agents actually gain (since
others did not reallocate). Consequently, the spatial distribution of economic activity deviates
ceteris paribus systematically when agents make decisions under uncertainty compared to perfect
foresight. In that sense, aggregate uncertainty per se shapes the spatial economy.
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1 Introduction

Economists and policymakers alike are interested in understanding how the spatial allocation

of economic activity is affected by changes of the fundamentals of an economy. These changes

can result from trade-policy shocks (Caliendo et al., 2019; Dix-Carneiro et al., 2023), trends

in robotization (Acemoglu and Restrepo, 2020), climate change (Bilal and Rossi-Hansberg,

2023), or the sudden emergence of geopolitical tensions (Baker et al., 2023). Spatial general

equilibrium models are a workhorse tool for quantifying how changes of the determinants

of local economic activity – such as productivity or market access – lead to a restructuring

of the economic geography through spatial linkages. However, one aspect that has received

little attention in spatial general-equilibrium models is that agents act under uncertainty

about the actual realizations of economic fundamentals in response to shocks, and that the

uncertain component of these fundamentals is itself an important determinant of reallocation

decisions.

While choices about jobs and residence locations are in the limelight of spatial models, the

future value of jobs or residence locations must often be predicted long before and without

knowing to which extent expected benefits materialize – hence, decisions are taken under

uncertainty. So far, we know relatively little about how the uncertainty about economic

fundamentals affects the spatial equilibrium: the vast majority of existing frameworks solve

for an equilibrium in which agents have perfect foresight on aggregate economic outcomes,

thus, shutting down the role of uncertainty for tractability reasons.1

Only recently, the literature has been enriched by frameworks that can handle uncertainty

in spatial dynamic models.2 Essentially, these build on the idea of perturbations around a

perfect-foresight path. This makes them flexible and efficient but less suited for a context of

shocks that are aggregate, large, and, hence, discrete in nature (both over time and space),

where the anchor to a perfect-foresight trajectory might rise concerns. This is the context

in which, in this paper, we aim to provide some closure to the research question examining

how uncertainty influences the spatial distribution of economic activity.

We offer two contributions to the literature. We illustrate a solution methodology that

allows for solving dynamic spatial general-equilibrium models under aggregate uncertainty.

1 For instance, in the seminal contributions of Artuç et al. (2010) and Dix-Carneiro (2014) the problem of
spatial labor reallocation is stated under uncertainty, and the structural estimation strategy accounts for it,
but perfect foresight is then assumed and imposed to obtain the simulated predictions of the model.

2 To the best of our knowledge, three approaches have been proposed to accomplish this task, namely the ones
by Kleinman et al. (2021), Bilal (2023), and Fan et al. (2023). In what follows, and specifically in Section 5,
we discuss similarities and differences of the approach proposed here with this earlier work.
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This methodology rests on three fundamental pillars to overcome the curse of dimension-

ality standard computational methods face: (i) we cast the model as a coupled discrete-

state and discrete-time Mean Field Game (MFG), following Gomes et al. (2010); (ii) we

solve for the grid-valued counterpart of the MFG, extending the continuous-time approach

by Achdou and Capuzzo-Dolcetta (2010) to discrete time and discrete state; (iii) we use

barycentric piece-wise linear interpolation to write the MFG as a contraction on the dis-

cretized state space, building on the work by Debrabant and Jakobsen (2013).

Consequently, thanks to this novel approach, the key policy contribution of the present

work is to highlight the role uncertainty plays as a determinant of the spatial allocation of

economic activity. We show that uncertainty is not – only – a driver for freezing investment

decisions (including mobility and specialization), as shown in the macro literature.3 The

spatial distribution of economic activity deviates systematically when agents make decisions

under uncertainty compared to what would emerge under perfect foresight. Through this

channel, uncertainty may generate a source of comparative (dis)advantage across jobs.

The spatial general-equilibrium model has the following features. (i) Each location hosts

several sectors where workers in different occupations are employed. We will refer to a

region-sector-occupation tuple as a ‘job’. (ii) Given the allocation of labor at a given point

in time, the within-period equilibrium is based on the model of Eaton and Kortum (2002)

in its extension to multiple sectors by Caliendo and Parro (2015) and Caliendo et al. (2019).

Production uses labor, locally fixed structures and materials that can be costly sourced

from different places. (iii) Labor is mobile and can move across space at the end of each

period subject to moving costs. (iv) Individuals move across space because of idiosyncratic

preferences across jobs, different economic fundamentals across jobs, and different option

values of being in particular jobs. Uncertainty about future real income associated with a job

roots in the volatility of total factor productivity (TFP) which is specific to the production

in a region and sector, as in Caliendo et al. (2018).4

This design is suited for a counterfactual analysis in which we assess the quantitative

impact of uncertainty. Specifically, we compare the allocation of individuals across jobs un-

3 The literature on real business cycle shows that an increase in volatility of returns freezes hiring and
investment, Bloom (2009), which, in turns, triggers a drop in output (Fernandez-Villaverde et al., 2011,
Bloom et al., 2018).

4 While the way we look at uncertainty is common in macro and quantitative trade literature, there is a
complementary view that focuses on the uncertainty of trade policy; see the two recent and insightful contri-
butions by Pierce and Schott (2016) and Handley and Limao (2017). Furthermore, the role of uncertainty
channeled via international trade has stimulated a large body on reduced-form studies; see Krishna et al.
(2012) and Krishna and Senses (2014).
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Figure 1.1: Ranking of jobs under uncertainty and perfect foresight

der uncertainty with the one under perfect foresight (certainty), while fixing all economic

fundamentals in the two scenarios to be the same between these regimes, including actual

TFP levels. To illustrate this point, we conduct a quantification of the model based on

France and solve for the predicted distribution of labor over 2,156 job types.5 Figure 1.1

plots the ranking of jobs by size (i.e., fraction of the workforce employed in a job) under

uncertainty versus under perfect foresight resulting from this quantification for France, given

the same fundamentals. While the mass of jobs on the diagonal confirms that the deter-

ministic structure of the economy matters, the off-diagonal mass points to the differential

impact of aggregate uncertainty: many jobs gain and others lose substantially in terms of

employment size under uncertainty relative to perfect foresight.

What matters for the ranking of jobs in terms of their attractiveness is not uncertainty

in absolute terms – any agent dislikes uncertainty, here – but in relative terms. Some jobs

become more attractive compared to the perfect-foresight, as long as the uncertainty about

the future value in interaction with economic fundamentals is considerably less important

than elsewhere. Hence, although uncertainty is a cost on average, the value of jobs does not

necessarily fall everywhere. The systematically different spatial allocation of labor across

jobs under uncertainty leads to welfare losses for some and to welfare gains for others.

Uncertainty-to-perfect-foresight welfare differences range from −5.46% to +3.83% among the

5 Sections 6 and 7 provide a detailed discussion of the quantitative analysis.
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older workforce (above 40) and from −17.03% to +4.37% among the young workforce. This

heterogeneity materializes with an identical realization of economic fundamentals, hence,

purely because of aggregate uncertainty.

Three bodies of work relate particularly closely to the problem addressed in this pa-

per. First, within the quantitative trade and regional literature, our paper directly speaks

to a recent line of research accounting for dynamic adjustments (see Desmet et al., 2018;

Caliendo et al., 2019; Allen and Donaldson, 2020; Bilal and Rossi-Hansberg, 2021, Dix-Carneiro et al.,

2023). However, prior work in this field did not and was not designed to address how global

uncertainty affects the spatial distribution of economic agents and economic activity.6 As

already discussed, few recent approaches accommodate uncertainty, but as a perturbation of

the approximated model around the steady state of the economy (such as in Kleinman et al.,

2021 and Bilal, 2023), or around a perfect-foresight path (Fan et al., 2023). In comparison,

our analysis is dynamic and preserves the full non-linear structure of the problem, while not

relying on a steady state or perfect foresight. Thus, it is suited for addressing reallocation

patterns that are discrete in nature and triggered by large, aggregate shocks.

Second, our work builds on the quantitative structural literature on labor-market ad-

justments following trade shocks (see Artuç et al., 2010; Dix-Carneiro and Kovak, 2017;

Dix-Carneiro et al., 2021 and the review on local labor market adjustment by Moretti, 2011).

Related work considers agents with perfect foresight about aggregate shocks. Artuç et al.

(2010) develop a rational-expectations model of dynamic labor adjustment, then extended

in Artuç and McLaren (2015) and widely adopted in the aforementioned literature. How-

ever, predictions of the approach are based on simulation of a perfect-foresight path of

adjustment. The latter cannot offer a quantification of the importance of uncertainty.

Dix-Carneiro and Kovak (2017) and Dix-Carneiro et al. (2021) carefully model switching

costs, sector- and occupation-specific human capital, local amenities, and search frictions in

labor markets, and agents eventually face uncertainty about idiosyncratic shocks, though

not large, aggregate shocks and uncertainty.

A third line of research investigates the determinants of spatial allocation of economic

activity, in interaction with geography and Ricardian comparative advantage; see the studies

summarized in Redding and Rossi-Hansberg (2017). We join this literature by building on

6 In Desmet et al. (2018) location choices do not depend on future economic conditions. In Caliendo et al.
(2019) and Dix-Carneiro et al., 2023 agents are assumed to be perfectly foresighted. In Allen and Donaldson
(2020) the driving force of reallocation (together with technology) is the accumulation of amenities. And in
Bilal and Rossi-Hansberg (2021) agents’ location decisions respond to income shocks which are not channeled
through spatial linkages.
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the modern quantitative, multi-country, multi-sector general-equilibrium framework in trade

(see Eaton and Kortum, 2002; Dekle et al., 2007; Alvarez and Lucas, 2007; Caliendo and Parro,

2015) and regional economics where commuting or migration and a deeper understanding

of spatial linkages are considered (see, e.g., Monte et al., 2018; Adao et al., 2020). Despite

their usefulness for counterfactual analysis, these frameworks are static, thus, they are not

suited for addressing the dynamics intrinsically rooted in forward-looking job and location

decisions under aggregate uncertainty.

Finally, the paper is complementary to the macroeconomic literature on heterogeneous-

agent models; see the review by Heathcote et al. (2009). In particular, we relate to frame-

works that are based on the seminal contributions of Krusell and Smith (1998) and Reiter

(2009), including the recent developments that build on MFG (Achdou et al., 2021; Bilal,

2023), on sequence-space Jacobian methods (Auclert et al., 2021), or on machine learn-

ing (Han et al., 2022). We share the research interest with this literature in the effect of

uncertainty, here rooted in TFP-volatility shocks, on welfare. In the macroeconomic lit-

erature, the uncertainty is considered with regard to production decisions (Bloom, 2009;

Bloom et al., 2018) or consumption and saving decisions (Fernandez-Villaverde et al., 2011;

Kaplan and Violante, 2018). We add a spatial dimension and focus on decisions about jobs.

Doing so changes the qualitative effects (from absolute to relative) as well as the quantitative

effects of uncertainty, as the latter is a driver of comparative (dis-)advantage in the spatial

economy.

The remainder of the paper is organized as follows. In the next section we model the

intertemporal allocation of labor among jobs (i.e., region, sector and occupation) as a system

of individual dynamic optimal control problems (DOCPs) augmented with a law of motion for

the distribution of labor force. In the third section we describe the within-period equilibrium

of the competitive multi-country multi-sector economy, given the pre-determined allocation

of labor. In the fourth section we discuss the distinctive role that uncertainty plays in

spatial models as opposed to the typical setup of macro models with heterogeneous agents,

that is in closed economy. In the fifth section we discuss the methodology to obtain the

numerical solution of the model. In section six we show how to take the model to the data

and section seven outlines the results from a calibration and quantitative analysis of the cost

of uncertainty based on French data. The last section concludes. The Appendix provides a

rich set of background materials.
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2 Inter-temporal allocation of labor

In this section we describe a dynamic general equilibrium model with spatially segmented

markets, both for products and labor. We build on Caliendo et al. (2019) to characterize the

spatial equilibrium and follow Artuç et al. (2010) to model how households of different type

make discrete, forward-looking decisions on their job. We specifically allow for risk-averse

households to face aggregate uncertainty about the value of jobs under rational expectations

but imperfect foresight.

2.1 Endowments and market structure

We consider a world economy populated by a unitary measure of mobile households dis-

tributed in r = 1, ..., R segmented regions. In each region, a large number of perfectly

competitive firms produce goods that are horizontally differentiated by region of origin and

sector s = 1, ..., S. Firms located in region r and producing in sector s combine a region-

sector specific stock of Hrs > 0 units of local, immobile structures with mobile labor. The

latter is located in the same region r, supplied in the same sector s, and differentiated by

occupation type k = 1, 2, ..., K.

The region-sector-occupation triplet defines a job j = {r, s, k}. Every job is filled by a

measure of agents who supply labor inelastically in exchange for the market clearing wage

in the job-specific market. There are no means of saving, so that, in each period, households

consume the equivalent of their real wage determined by their job-specific wage and their

region-specific price index.

Time is discrete and denoted by t = 0, 1, 2, ... for an infinite horizon. Within every period

t, goods are traded at their marginal cost in region-segmented output markets, and jobs are

allocated at the value of their marginal product in job-segmented labor markets. Between

time periods, households reallocate optimally across jobs, as we will describe below. The

measure of households in each job at the beginning of a period t + 1 is a predetermined

outcome of the choice made by individuals before the end of period t about which job to

choose in the next period.

2.2 Lifetime age spells

Every individual transits through four age spells during her lifetime, a = {b, y, o, d}. A

newborn, a = b, is born with probability λ∗ ∈ (0, 1) to young individuals currently in a

certain job. Newborns do not consume or supply labor but prepare themselves to become
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next period with probability λb = 1 young individuals, a = y, who will supply labor in a

certain job. A young household will become old, a = o, with probability λy ∈ (0, 1) at the

beginning of the next period but still work. Old individuals will die at probability λo ∈ (0, 1).

Both young and old households supply labor in the job in which they start the period,

they consume by purchasing goods in the same region, where their job is located (i.e., there is

no commuting).7 By the end of each period both young and old individuals make a decision

on the job they will start with in the next period. However, upon dying old individuals drop

out of the population at zero value. Therefore, older households have a shorter expected

lifetime than young households.

2.3 Benefits and costs from reallocating across jobs

Households enjoy two sources of value: utility from consumption of goods in the current

period t and satisfaction from the job that they will start with in the next period t +

1. Preferences across consumption bundles are the same for every household. Instead,

individuals are heterogeneous in their individual satisfaction from having a certain job. Their

objective is to maximize the discounted sum of utility from consumption and job satisfaction

over their lifetime.

Heterogeneity about job satisfaction captures in a reduced form the non-pecuniary value

of a given job across individuals. Every period households draw i.i.d. realizations of taste

shocks for every job. They are distributed with c.d.f. F (ε) and p.d.f. f(ε). An individual h

that finds herself in job j at the end of period t collects a value νεjh,t, where ν > 0 scales the

contribution of idiosyncratic payoffs for being in a job j at the end of period t, εjh,t.
8 The

distribution of taste shocks is constant over time, individuals, and job characteristics such

that εjh,t ∼ F (ε).

Idiosyncratic tastes are contrasted with costs for changing the job that vary by the job of

origin and the job of destination, and eventually even by age. Households of age a = {b, y, o}
face a cost ζaj,j

′ ≥ 0 of changing from the current job j to a future job j′. Moving costs are

7 In the quantitative model we present below, this is justified by the relatively large size of regions we consider
in France. The choice of this granularity is dictated by some of the data required for the model calibration.
However, putting together regions, sectors, and skill levels, there will be more than 2, 000 jobs between which
individuals can transit. Hence, the state space of the model will be large.

8 An intuitive interpretation of ν is the degree of job differentiation: if jobs are perfect substitutes such that
households are indifferent between them, i.e., there is no differentiation ν = 0, then rational households
would only be interested in reallocating across jobs that maximize their lifetime stream of consumption.
Otherwise, an optimal reallocation across jobs is the outcome of balancing utility from consumption and job
satisfaction over the lifetime. Thus, ν can be seen as capturing the intrinsic value of the option to move to
a certain job conditional on observable characteristics.
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measured in terms of utility loss, they are assumed to be time-invariant and non-stochastic.9

This implies that the net benefit for a household h of moving from a job j at time t to a job

i at time t+1 is given by (εih,t− ζaj,i)− (εjh,t− ζaj,j), which consists of an idiosyncratic taste

and a moving cost that is common to all households with the same age moving between the

same jobs.

Frictions captured in the moving costs are exogenous to the model, but with respect to

the dimension of age we impose a structure, namely ζoj,j
′ ≥ ζyj,j

′ ≥ ζbj,j
′
within the same

job pair.10 We choose this structure to ensure that the incentive for older individuals to stay

in a less attractive job relative to young individuals is not systematically counteracted by

an age-related decline in moving costs. Without loss of generality, we normalize the cost of

remaining in the same job to be zero, ζaj,j = 0 at every age a = {b, y, o}.

2.4 Inter-temporal problem of individuals

At the beginning of every period t, production starts given the current distribution of labor

across jobs Lt = {Lj
t}j∈J and the aggregate stochastic state of the economy Zt = {Zj

t }j∈J ,
that consists of realizations of aggregate shocks which affect the distribution of real income

across jobs.11 Through this channel, aggregate uncertainty affects the mobility between jobs.

Before the end of every period t a certain household h realizes the vector of idiosyncratic

tastes for all jobs εh,t = {εjh,t}j∈J . Given the endogenous state Lt, the realization of the

stochastic state Zt and the realizations of job specific shocks εh,t, each individual makes an

independent forward-looking decision about the optimal job where to end the period.

Let W aj (Lt, Zt, εh,t) be the lifetime welfare of a household of age a in job j with a vector

of idiosyncratic values εh,t. Let V aj (Lt, Zt) = Eh [W
aj (Lt, Zt, εh,t)] be the average lifetime

value of a household in age spell a and job j at time t, where the operator Eh [·] yields the
expectation taken over the idiosyncratic realizations of the value εjh,t across all households.

9 As in frameworks that our model is related to (e.g., Dix-Carneiro, 2014 or Caliendo et al., 2019), moving
costs summarize in a reduced form all frictions to changing jobs that the model is silent about.

10As said before, the newborns do not work or consume. We index the latter with an origin job j to indicate
that they inherit an information set associated with their parents’ job j that provides an initial condition
in terms of where to start their employment journey, before choosing their first job. Given this information
summarized in the moving costs ζbj,j

′
, newborns can start in the same job as their parents or in another

one.
11For concreteness, we anticipate that in the specific implementation of the model we will consider a stationary
stochastic process of total factor productivity (TFP) at the level of region-sector pairs. However, the approach
is not restricted to stationary technological shocks. The analysis goes through for any aggregate stochastic
state with a Markov process that satisfies Feller’s property, such that for every continuous, bounded and
real-valued function of Zt+1 the expected value conditional on Zt is continuous and bounded.
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Let ωaj (Lt, Zt) be the utility from current consumption when the household of age a is in a

job j and the aggregate state is {Lt, Zt}. We assume that future values are discounted at a

rate β ∈ (0, 1). The lifetime value of a rational household h conditional on its age and job

status is given by:

W aj (Lt, Zt, εh,t) = ωaj (Lt, Zt) + max
n∈J

{
νεnh,t − ζaj,n + βEt

[
V̄ an (Lt+1, Zt+1)

]}
, (1)

where Et[·] is the expectation operator given the information available at time t. Assuming

that the newborn do not earn nor consume and that the young and the old in the same job

j earn the same wage and consume the same, we obtain

ωbj (Lt, Zt) = 0, ωaj (Lt, Zt) = ωj (Lt, Zt)∀a ∈ {y, o},

where V̄ aj (Lt+1, Zt+1) denotes an average across future age spells and is defined as

V̄ aj (Lt+1, Zt+1) = (1− λa)V aj (Lt+1, Zt+1) + λaV a+1,j (Lt+1, Zt+1)∀a ∈ {y, o},

using V̄ bj (·) = V yj (·), V a+1,j (·) = V o,j (·) for a = y, and V a+1,j (·) = 0 for a = o.

We wish to characterize the average across households of values in (1) by age and job

group, i.e., V aj (Lt, Zt) = Eh [W
aj (Lt, Zt, εh,t)]. A convenient parametrization of the distri-

bution of idiosyncratic tastes as Gumbel yields a closed-form solution for the discrete-choice

problem in (1). A detailed derivation is discussed in Appendix A. The value of the DOCP

for an individual in age spell a job j is given by

V aj (Lt, Zt) = ωaj (Lt, Zt) + ν ln

(∑
k∈J

e
1
ν (βEt[V̄ ai(Lt+1,Zt+1)]−ζaj,i)

)
(2)

and the associated optimal policy describing the fraction of movers to a job i is given by:

maj,i
t =

e
1
ν (βEt[V̄ ai(Lt+1,Zt+1)]−ζaj,i)∑

k∈J e
1
ν (βEt[V̄ ak(Lt+1,Zt+1)]−ζaj,k)

. (3)

The solution in (2) generalizes the spatial dynamic problem of Caliendo et al. (2019) in

two directions: households have rational expectations about an uncertain future; and they

are heterogeneous with respect to an unavoidable risk associated with aging. Equation (3)

determines the reallocation of households over jobs between time t (in which some households
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leave their current job j) and the next period t + 1 (in which these households are in their

new job i). This information is what will be sufficient to characterize – in a deterministic

way – the new allocation of households across jobs, Lt+1.

2.5 Law of motion of the labor force

Let Lbj
t = λbLyj

t , Lyj
t , and Loj

t be the populations of newborn, the young, and the old

individuals in a job j at time t. With the introduced age-transition probabilities, these

populations will turn into the following age groups in t+1. The young of t+1 without a job

index, Ly
t+1 will consist of λbLy

t “new young” and (1 − λy)Ly
t “remaining young”. The old

of t+ 1 without a job index, Lo
t+1 will consist of λyLy

t “new old” and (1− λo)Lo
t “remaining

old” (not deceased). The individuals of these groups will have started out from some job i

in t and transited to job j at t + 1 at a rate mai,j
t for age group a. Using the convenient

notation of λy−1 = λb, λo−1 = λy, my−1i,j
t = mbi,j

t , and mo−1i,j
t = myi,j

t , the law of motion for

individuals of age a ∈ {y, o} can be written as:

Laj
t+1 = (1− λa)

J∑
i=1

(
mai,j

t Lai
t

)
+ λa−1

J∑
i=1

(
ma−1i,j

t La−1,i
t

)
. (4)

We postulate the initial condition:12

Lo
0 =

J∑
j=1

Loj
0 =

λy

λy + λo
. (5)

Clearly, while this condition implies a stable aggregate population by design, the distribution

of the young and the old across jobs (thus, across regions, sectors, and occupations) will be

endogenous.

3 Within-period allocation of output

The DOCP of Section 2 at each period t takes the level of utility, ωaj(Lt, Zt) for each age

a = {o, y} and job j = 1, ..., J , that solves the within-period equilibrium of the model for

a predetermined aggregate deterministic state Lt and a given realization of the aggregate

stochastic state Zt. We assume that the instantaneous utility features constant relative risk

12See Appendix A for a detailed discussion of the stationarity condition on population size.
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aversion

ωoj(Lt, Zt) = ωyj(Lt, Zt) =


ln(Cj

t /miniC
i
0) if χ = 1

(Cj
t /mini C

i
0)

1−χ−1

1−χ
if χ ∈ (0, 1)

(6)

where Cj
t ≡ Cj(Lt, Zt) is the aggregate consumption at time t by an agent in a job j =

{r, s, k} who supplies labor in region r, sector s, and occupation k, and χ ∈ (0, 1] is the

coefficient of relative risk aversion, such that 1/χ is the elasticity of intertemporal substitu-

tion.13

Agents allocate consumption across sectoral goods according to Cobb-Douglas prefer-

ences:

Cj
t =

S∏
s=1

(
cj,st
)αs

(7)

spending a share αs > 0 of their income, with
∑S

s=1 α
s = 1, on the consumption of cj,st ≡

cj,s(Lt, Zt) units of the final good from sector s. Let wj
t be the nominal income of an agent

in a job j = {r, s, k} and call P rs
t the price index of final goods in region r sector s. Then,

the consumption of final goods in region r and sector s′ by an agent in job j = {r, s, k} at

time t is cj,s
′

t = αs′wj
t/P

rs′
t .

Prices and consumption levels are determined in the within-period equilibrium given the

allocation of labor and the realization of the aggregate stochastic state of the economy, thus,

(Lt, Zt) is the state of the economy at time t. Specifically, the market structure of the

economy follows the one in Caliendo et al. (2018) and the aggregate stochastic state consists

of region-sector-specific realizations {Ars
t }R,S

r=1,s=1 of total factor productivity (TFP). Hence,

firms in a sector and region employ labor, structures, and intermediates to produce output

which is used as an intermediate input in production or consumed as a final good.

The within-period equilibrium is characterized by a set of exogenous and time-invariant

parameters: the cost shares for skill-specific labor in all labor costs (ϵ), the share of value

added in all production costs (double-indexed γ), the share of structures in value added

13 In the definition of utility (6), scaling for the minimum consumption in the initial period does not affect
the optimal allocation, nor the sorting of utility across jobs over time, that matters for the intertemporal
allocation. This normalization is convenient for tractability in a setup in which agents get old and eventually
die, since it implies that the value of being matched at any job in the initial period is not lower than the
value of dropping out of the population (zero, by construction).
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(ξ), the share of specific intermediates in all intermediates (quadruple-indexed γ), trade

imbalances (D), the endowment with structures (H), interregional and international trade

costs (τ), the Fréchet parameter governing the productivity distribution (θ), consumption

shares (α), and parameter composites (B and Γ). We outline this specific model in detail in

Appendix B. We only report the key equilibrium conditions for the sake of brevity.

Given the exogenous parameters of the model and the realization of (Lt, Zt), the within-

period equilibrium consists of six sets of variables: wages {wrsk
t }R,S,K

r=1,s=1,k=1, rental prices for

structures {ρrst }R,S
r=1,s=1, sales {Xrs

t }R,S
r=1,s=1, bilateral fractions of expenditure {π

rs,r′s
t }R,S,R

r=1,s=1,r′=1,

local prices of aggregate goods {P rs
t }R,S

r=1,s=1 and relative local prices of intermediate goods

{xrst }R,S
r=1,s=1 that solve the system of six equilibrium conditions:

wrsk
t =

ϵsk(1− ξrs)γrs

Lrsk
t

R∑
r′=1

πr′s,rs
t Xr′s

t , (8)

ρrst =
ξrs

1− ξrs
Lrs
t

Hrs
w̄rs

t , where w̄rs
t =

(
K∑
k

wrsk
t Lrsk

t

)
/Lrs

t and Lrs
t =

K∑
k

Lrsk
t ,

Xrs
t =

S∑
s′=1

γrs
′,rs

(
R∑

r′=1

πr′s′,rs′

t Xr′s′

t

)
+ αs

(
S∑

s′=1

(
w̄rs′

t Lrs′

t + ρrs
′

t Hrs′
)
+Dr

t

)
,

πrs,r′s
t =

(
xr

′s
t τ rs,r

′s
)−θs (

Ar′s
t

)θs∑R
r′′=1

(
xr

′′s
t τ rs,r′′s

)−θs (
Ar′′s

t

)θs ,
P rs
t = Γrs

(
R∑

r′=1

(
xr

′s
t τ rs,r

′s
)−θs (

Ar′s
t

)θs)− 1
θs

,

xrst = Brs

(ρrst )ξ
rs

(
K∏
k=1

(
wrsk

t

)ϵsk)1−ξrs
γrs

S∏
s′=1

(
P rs′

t

)γrs,rs′

.

4 Uncertainty

The characterization of the DOCP in Section 2, given a within-period equilibrium as the one

described in Section 3, is completed by a random process for the aggregate stochastic state

Zt = {Zj
t }j∈J , that is anchored to the unpredicted (stochastic) component of an autoregres-

sive process for region-sector-specific TFP levels. The one key feature of the latter is that it

affects the perceived (certainty-equivalent) real income associated with a job, which is what

agents compare when making their location decisions under uncertainty.

Inter-temporal optimality of the DOCP implies that for the marginal mover from job j
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to job n the cost of moving equals the discounted expected total gains from moving, i.e., the

difference in expected lifetime value of any job relative to the reference job an agent currently

holds. The lifetime value consists of the current value and the option (or continuation) value,

as can be seen from equation (2).

For an individual of a specific age, the expected lifetime value in a specific job inter alia

depends on (i) shocks that she can arbitrage against by choosing optimally a job to start

at in the next period, (ii) aging risk, which cannot be avoided and truncates the expected

lifetime horizon as well as the continuation value, (iii) moving costs between jobs that are

known at the time of reallocation. In this context, the role of uncertainty can be understood

looking at four main channels.

1. If agents are risk-averse, aggregate uncertainty depresses the incentive to relocate relative

to perfect foresight. Hence, the expected gains from moving under the adopted assumptions

are lower for risk-averse agents with rational expectations under uncertainty.

2. Due to aggregate uncertainty, more households rationally spend a greater portion of their

life in relatively bad jobs. In a population of rational but risk-averse agents, uncertainty

reduces the incentive to relocate toward jobs that gain value in relative terms. Therefore, a

greater fraction of households than under perfect foresight remains in deteriorating jobs.

3. Aging reduces the option value of relocation. As long as moving costs do not decline

with age, the difference in expected lifetime implies that, ceteris paribus, the option value

to reallocate to any job is greater for a young household than for an old one.

These three insights are familiar to macroeconomic studies that adopt an option-value

approach to choices made by risk-averse agents under uncertainty, and they unambiguously

qualify uncertainty as a welfare cost.14 However, in a spatial equilibrium model with multiple

jobs, these jobs are interdependent through intratemporal linkages (trade) as well as the

intertemporal ones (mobility of agents across jobs). Then, uncertainty plays a broader role.

4. Uncertainty as a source of comparative (dis-)advantage of jobs. In a spatial open economy

with multiple, interlinked jobs, what matters for the attractiveness of a job is ceteris paribus

not the absolute degree of uncertainty associated with it but the one relative to other jobs.

And in equilibrium, uncertainty interacts with other fundamentals determining the value of

a job. Hence, the opportunity costs of moving to a certain job differ from what they would

have been under perfect foresight.

14 In the Appendix, Section D, we provide a more formal discussion of these results.
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Through this channel, uncertainty may generate a source of comparative (dis)advantage

across jobs. This creates room for new welfare gains in some jobs and welfare losses in others,

due to how uncertainty shapes the distribution of labor and, in turn, of output production,

across regions, sectors and occupations relative to a perfect-foresight world.

An illustration of the latter in a customary spatial equilibrium model is beyond the reach of

analytical derivations. Therefore, we illustrate this mechanism through a numerical solution

of the model, that is calibrated to France.

5 Solving the model

The system (2)-(4) describes a model in which heterogeneous agents decide about their job

in the next period by solving a DOCP, given the current allocation of labor across jobs

and the aggregate stochastic state of the economy, (Lt, Zt). Each agent acts in a rational,

non-cooperative way and takes into account that the next-period allocation of labor Lt+1

results from the aggregation of current optimal choices. Such a dynamic model is well-suited

to be characterized as a backward-forward Mean Field Game (MFG) of coupled Bellman

equations (2), with policies (3), and Kolmogorov equations (4) under aggregate uncertainty.

Obtaining a solution for such a MFG with aggregate uncertainty is challenging. Only

recently, the literature in mathematics has developed numerical approaches that provide a

solution to MFGs in continuous time, continuous state, and in the absence of aggregate

uncertainty. In their Section 3, Achdou et al. (2021) provide an important discussion of

solution techniques of MFGs with a focus on economic problems. However, our model (i)

is in discrete time, (ii) features discrete individual deterministic states (here, “jobs”), (iii)

accounts for aggregate uncertainty, and (iv) keeps track of two overlapping generations of

individuals who supply labor, a ∈ {o, y}.15 Furthermore, the scale is large: the model

consists of R · S region-sector pairs and K-many skills, so that there are J = R · S ·K jobs.

Tasks of the type at hand call for the development of a new solution algorithm, that we

outline in the following subsections.

15The young are born and get old, and the old die, all at respective probabilities, so that the size of the
population and the relative size of the age groups in the whole population remains constant, while the
composition of the labor force by age across jobs can change over time.
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5.1 Notation

Let AJ = (1, 2, ..., J, J + 1, J + 2, ..., 2 · J) be the space of age and job pairs {(aj), ∀a =

o, y,∀j = 1, ..., J}. Denote as F2·J = {(L1, L2, ..., Laj, ..., L2·J) : Laj ∈ (0, 1)∀(aj) ∈
AJ ,

∑
(aj)∈AJ L

aj = 1} the space of frequency distributions on AJ . The aggregate de-

terministic state of the problem at time t is the vector Lt = {Laj
t }2·Jaj=1 ∈ F2·J .

Define the compact set Z2·J ⊂ ℜ2·J
+ such that an element Z ∈ Z2·J consists of a vector

of R · S realizations of region and sector-specific TFP levels, each replicated 2 ·K times for

age and occupation types employed in the same region-sector pair. The aggregate stochastic

state of the problem at time t consists of a vector Zt = {Zaj
t }2·Jaj=1 ∈ Z2·J .

Define the random mapping Q : Z2·J → Z2·J . We assume that the random process for

the aggregate stochastic state Zt+1 = Q(Zt) for t = 0, 1, ... is Markov and satisfies Feller’s

property.

5.2 Master Equation

Consider the Bellman equation (2). Given a non-empty and compact set of actions, a

Lipschitz-continuous, bounded and positive-real valued utility function ωaj : F2·J × Z2·J →
ℜ+, and an aggregate stochastic state with Markov and Feller properties, the value function

V aj : F2·J × Z2·J → ℜ+ is Lipschitz-continuous, bounded and positive real-valued. Call

V = {V aj : F2·J ×Z2·J → ℜ+,∀(aj) ∈ AJ } ∈ ℜ2·J
+ a 2 ·J-dimensional vector of continuous,

bounded and positive real-valued functions defined on F2·J ×Z2·J .

For a vector of value functions V ∈ ℜ2·J
+ , a frequency distribution Lt+1 ∈ F2·J and

an aggregate stochastic state Zt ∈ Z2·J , denote as maj,i
t ≡ maj,i(V , Lt+1, Zt) the fraction

of movers implied by the policy of the DOCP (3) given the state (Lt, Zt). The system

of Kolmogorov equations (4) defines a 2 · J-dimensional vector of continuous and bounded

functions Lnext = {Laj
next : F2·J × Z2·J → (0, 1),∀(aj) ∈ AJ } ∈ F2·J that satisfies the

fixed-point Lnext(Lt, Zt) = M(V ,Lnext(Lt, Zt), Zt)Lt in F2·J , where M(V , Lt+1, Zt) is a

2 · J-dimensional block-diagonal transition matrix, whose elements are, respectively, {(1 −
λa)mai,j(V , Lt+1, Zt) (ai) ∈ AJ , j = 1, ..., J} and {λama−1i,j(V , Lt+1, Zt), (ai) ∈ AJ , j =
1, ..., J}.

Thus, a solution of the MFG consists of a pair of 2 · J-dimensional vectors of continuous

and bounded functions (V ⋆,L⋆
next) ∈ ℜ2·J

+ × F2·J defined on the state space F2·J × Z2·J

such that L⋆
next(Lt, Zt) = M(V ⋆,L⋆

next(Lt, Zt), Zt)Lt satisfies (2)-(4), while the economy is

in equilibrium (6)-(8) at each state (Lt, Zt) for every period t = 0, 1, ..., given an initial
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allocation (L0, Z0) ∈ F2·J × Z2·J that satisfies (5), and given the stochastic process Zt+1 =

Q(Zt). This defines the Master Equation, that is the solution of the MFG defined on the

product space of value functions and frequency-distribution functions ℜ2·J
+ ×F2·J .

Before proceeding, note that the solution of the MFG can be written in terms of the

payoffs of moving from a job, say j, to other jobs, say n, given the current age spell a

contingent on the current state φaj,n[Lt, Zt] : ℜ2·J
+ ×F2·J → ℜ

φaj,n[Lt, Zt](V ,Lnext) = (9)

=
1

ν

(
βEt

[
(1− λa)V an (Lnext(Lt, Zt),Q(Zt)) + λaV (a+1)n (Lnext(Lt, Zt),Q(Zt))

]
− ζaj,n

)
.

The MFG (2)-(4) as a continuous and bounded function of contingent payoffs takes the form:

V aj (Lt, Zt) = ωaj (Lt, Zt) + ν ln

(
J∑

n=1

eφaj,n[Lt,Zt](V ,Lnext)

)
∀(aj) ∈ AJ (10)

Lan
next (Lt, Zt) = (1− λa)

J∑
j=1

(
eφaj,n[Lt,Zt](V ,Lnext)∑J
i=1 e

φaj,i[Lt,Zt](V ,Lnext)

)
Laj
t + (11)

+ λa
J∑

j=1

(
eφa−1j,n[Lt,Zt](V ,Lnext)∑J
i=1 e

φa−1j,i[Lt,Zt](V ,Lnext)

)
La−1j
t ∀(an) ∈ AJ

for Lt+1 = Lnext(Lt, Zt) and Zt+1 = Q(Zt) given (L0, Z0), (12)

where (10) is the Bellman equation, (11) is the Kolmogorov equation, and (12) summarizes

the recursive structure of the MFG and the given initial state.

5.3 Solution algorithm

The proposed solution algorithm constructs a finite-dimension approximation of the MFG

(10)-(12) such that the solution can be computed as the unique fixed-point of a contraction

mapping on a complete metric space defined on ℜ2·J
+ × F2·J , and rests on the following five

pillars.

[1] Finite-dimension representation of a system of MFGs. Consider an integer

index and number p = 1, ..., P of distributions of agents across age and job pairs lp ∈ F2·J .

The set of elements (l1, l2, ..., lP ) serves as a basis to discretize the support of the aggregate

deterministic state in P -many points in each job. Analogously, consider an integer index and
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number q = 1, ..., Q of realizations of the aggregate stochastic state zq ∈ Z2·J . The set of

elements (z1, z2, ..., zQ) serves as a basis to discretize the support of the aggregate stochastic

state in Q-many points in each location (or job).

This finite-dimensional representation is aimed at working as if there were a system of P ·
Q-many MFGs, each starting at one grid-point of the aggregate state (lp, zq) ∈ F2·J×Z2·J , for

p = 1, ..., P and q = 1, ..., Q.16 Define V = {Vpq
aj = V aj(Laj

next(l
p, zq),Q(zq)), (aj) ∈ AJ : p =

1, ..., P, q = 1, ..., Q} and L = {Lpq
aj = Laj

next(l
p, zq), (aj) ∈ AJ : p = 1, ..., P, q = 1, ..., Q}

to be, respectively, the vector of value functions and the vector of next-period frequency

distribution functions given the current-period states {(lp, zq) : p = 1, ..., P, q = 1, ..., Q}.
Thus, (V ,L) is the unknown of the system of MFGs with initial states in the discretized

state space.

[2] Piece-wise linear interpolation of contingent payoffs on the solution space.

Let φpq
aj,n(V ,L) be the payoff (9) contingent on a point (lp, zq) of the state space, i.e.,

φpq
aj,n(V ,L) ≡ φaj,n[l

p, zq](V ,L). Although one starts from points of the discretized state

space with a guess for the solution {(Vpq, lp) : p = 1, ..., P, q = 1, ..., Q}, the next-period

frequency distribution Lpq = Lnext(l
p, zq) might not belong to the set (l1, ..., lP ) and the

next-period realization of the aggregate stochastic state Q(zq) might not belong to the set

(z1, ..., zQ). Thus, also the next-period value function V (Lnext(l
p, zq),Q(zq)) might not

belong to the set {Vpq : p = 1, ..., P, q = 1, ..., Q}.
However, the guess can be used to interpolate the P · Q matrices of format [2 · J × J ]

of contingent payoffs φpq
aj,n(V ,L) : ℜ2·J

+ × F2·J → ℜ on the solution space ℜ2·J
+ × F2·J with

vertices in {(Vpq, lp) : p = 1, ..., P, q = 1, ..., Q}. To this purpose, define a P -dimensional

vector of barycentric weights:

{bp(L) ∈ [0, 1], bp(l
p) = 1 ∀p = 1, ..., P : ΣP

p=1bp(L) = 1 , L ∈ F2·J}

as follows

Definition. Given a metric function δ : F2·J×F2·J → ℜ+ the barycentric weights associated

with the distribution lp ∈ (l1, l2, ..., lP ) as a function of an arbitrary frequency distribution

16The only restriction that we impose, since we will interpolate the solution, is that the given initial allocation
belongs to the grid, l1 = L0. The remaining P − 1 distributions in (l1, l2, ..., lP ) and the Q vectors of
realizations of the aggregate stochastic state (z1, z2, ..., zQ) can be arbitrarily chosen, as we will discuss later
in the implementation.
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L ∈ F2·J are given in two steps: first, let (k1, k2) = argmin(k′,k′′){δ(lk
′
, L) + δ(lk

′′
, L)}, then

bp(L) =


δ(lk2 ,L)

δ(lk1 ,L)+δ(lk2 ,L)
if p = k1

δ(lk1 ,L)

δ(lk1 ,L)+δ(lk2 ,L)
if p = k2

0 otherwise.

Thus, barycentric weights locate an arbitrary frequency distribution in the hyper-segment

between the two closest distributions l1(p), l2(p) ∈ (l1, l2, ..., lP ) given the chosen metric func-

tion.17

With respect to the aggregate stochastic state, the expectation operator Et can be de-

scribed by means of a Q×Q matrix of time-invariant Markov probabilities: call πqq′ ∈ (0, 1)

the probability of the event Zt+1 = zq
′
conditional on Zt = zq. This is sufficient to define a

piece-wise linear interpolation of the payoff function (9) contingent on a point (lp, zq) of the

discretized state space for an arbitrary solution (V ,L) ∈ ℜ2·J
+ ×F2·J

φpq
aj,n(V ,L) =

1

ν

(
P∑

p′=1

bp′(Lpq)

Q∑
q′=1

πqq′
(
β
[
(1− λa)Vp′q′

an + λaVp′q′

(a+1)n

]
− ζaj,n

))
. (13)

Grid-valued contingent payoffs (9) defined for an initial state that belongs to the discretized

state space (l1, ..., lP ) × (z1, ..., zQ) are approximated by the interpolation (13), for a given

guess {(Vp′q′ , lp
′
) : p′ = 1, ..., P, q′ = 1, ..., Q}.

[3] Numerical system of MFGs. For convenience of notation, consider the column

stack of P ·Q vectors of value functions in ℜ2·J
+ and P ·Q vectors of frequency distribution

functions in F2·J
+ , each of dimension N = 2 ·J ·P ·Q, and use Ω to denote the corresponding

compact subset in ℜ2·N
+ . Let the 2 ·N -dimensional vector X = {(Vpq, lp) : p = 1, ..., P, q =

1, ..., Q} ∈ Ω be a guess for the solution of the system of MFGs on the discretized state

space. Then, we refer to the barycentric piece-wise linear interpolation of contingent payoffs

(13) as φpq
aj,n(X) : Ω → ℜ.

The system of MFGs consists of 2 · N equations in as many unknowns, which are the

elements of the vector X ∈ Ω. The problem can be written by means of two continuous

functions defined on the compact space Ω, namely Bpq
aj : Ω → ℜ for the grid-valued Bellman

17 It shall be noted that weights are positive only for two distributions among (l1, l2, ..., lP ) and that the metric
function δ can be an arbitrary function, as long as it satisfies the properties of a distance, e.g., sup norm or
the earth mover’s distance.
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equations and Kpq
an : Ω → [0, 1] for the grid-valued Kolmogorov equations:

Bpq
aj (X) = ωaj (lp, zq) + ν ln

(
J∑

n=1

eφ
pq
aj,n(X)

)
(14)

Kpq
an(X) = (1− λa)

J∑
j=1

(
eφ

pq
aj,n(X)∑J

m=1 e
φpq
aj,m(X)

)
lpaj + λ(a−1)

J∑
j=1

(
eφ

pq
(a−1)j,n

(X)∑J
m=1 e

φpq
(a−1)j,m

(X)

)
lp(a−1)j

(15)

given (lp, zq) ∀p = 1, ..., P , q = 1, ..., Q. (16)

The system (14)-(16) is the numerical counterpart to the MFG (10)-(12) defined on the grid

of P · Q points (Vpq, lp) ∈ ℜ2·J
+ × F2·J , each being a solution on the discretized state space

{(lp, zq) : p = 1, ..., P, q = 1, ..., Q}.

[4] Contraction mapping. The fixed-point equations (14)-(15) define the operator G :

Ω → Ω describing the system of MFGs with initial states in the discretized state space, whose

image is the vectorG(X) = {(B11
o1(X), ..., BPQ

aj (X), ..., BPQ
yJ (X), K11

o1 (X), ..., KPQ
aj (X), ..., KPQ

yJ (X))}.
The operator G(X) is a contraction on Ω with respect to the sup norm; see Section C in the

appendix for a detailed derivation of this result. Banach’s Contraction-mapping Theorem

implies that G : Ω → Ω has a unique fixed pointX⋆ ∈ Ω that can be constructed by iteration

starting from an arbitrary guess X ∈ Ω. The solution X⋆ to the system of MFGs (14)-(15)

yields a numerical value of the DOCP Vpq
aj = Bpq

aj (X⋆) ∈ ℜ+ and a numerical next-period fre-

quency distribution Lpq
aj = Kpq

aj (X⋆) ∈ (0, 1) for all (aj) ∈ AJ , p = 1, ..., P and q = 1, ..., Q,

corresponding to the contingent payoffs φpq
aj,n(X⋆) in (13).

The solution of the MFG (14)-(15) for a given initial state (L0, Z0) prescribes the determin-

istic next-period distribution L1. Hence, steps [1]-[4] of the algorithm can be repeated for

a next initial allocation (L1, Z1), and so on. Thus, the numerical solution of the MFG for

an arbitrary number of periods ahead can be computed recursively. However, the algorithm

delivers a solution not only to one MFG but to a system of P ·Q MFGs, each characterized

by a different initial allocation. This is a computational advantage since it allows to approx-

imate the solution for an arbitrary initial allocation by interpolating across solutions of the

different MFGs.
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[5] Piece-wise linear interpolation of the MFG on the state space. For an arbitrary

initial state (Lt, z
q) ∈ F2·J ×Z2·J , contingent payoffs (9) are interpolated on the discretized

state space, with vertices in (13). The barycentric piece-wise linear function interpolating

contingent payoffs on the support of the aggregate deterministic state is given by:

pwl[φaj,n] (Lt, z
q) =

P∑
p=1

bp(Lt)φ
pq
aj,n(X⋆), (17)

which approximates the contingent payoffs arbitrarily well as the number of grid-points for

the aggregate deterministic state P grows. Piece-wise linear functions of contingent payoffs

(17) are then used to approximate the value function and the law of motion of the MFG

with initial state (Lt, z
q)

num[V aj] (Lt, z
q) = ωaj (Lt, z

q) + ν ln

(
J∑

n=1

epwl[φaj,n](Lt,zq)

)
(18)

num[Laj
next] (Lt, z

q) = (19)

= (1− λa)
J∑

j=1

(
epwl[φaj,n](Lt,zq)∑J

m=1 e
pwl[φaj,m](Lt,zq)

)
lpaj + λ(a−1)

J∑
j=1

(
epwl[φ(a−1)j,n](Lt,zq)∑J

m=1 e
pwl[φ(a−1)j,m](Lt,zq)

)
lp(a−1)j

given Lt, (l
p, zq) for p = 1, ..., P , q = 1, ..., Q, (20)

which yields a numerical MFG that preserves the non-linearity of the exact MFG (10)-(12).

The accuracy of the approximated solution can be checked substituting for the vectors of

numerical solutions num[V ] (Lt, z
q) and num[Lnext] (Lt, z

q) in (10)-(11). This yields the

benchmark functions for the Bellman equations

V̌ aj (Lt, z
q) = (21)

ωaj (Lt, z
q) + ν ln

(
J∑

n=1

e
1
ν

(
β
∑Q

q′=1
πqq′

[
(1−λa)num[V an]

(
num[Lnext](Lt,z

q),zq′
)
+λanum[V (a+1)n]

(
num[Lnext](Lt,z

q),zq′
)]

−ζaj,n
))
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and for the Kolmogorov equations

Ľan
next (Lt, z

q) = (22)

(1− λa)

J∑
j=1

 e
1
ν

(
β
∑Q

q′=1
πqq′

[
(1−λa)num[V an]

(
pwl[Lnext](Lt,z

q),zq′
)
+λanum[V (a+1)n]

(
num[Lnext](Lt,z

q),zq′
)]

−ζaj,n
)

∑J
i=1 e

1
ν

(
β
∑Q

q′=1
πqq′ [(1−λa)num[V ai](num[Lnext](Lt,zq),zq′)+λanum[V (a+1)i](num[Lnext](Lt,zq),zq′)]−ζaj,i

)
Laj

t +

+ λa
J∑

j=1

 e
1
ν

(
β
∑Q

q′=1
πqq′

[
(1−λa−1)num[V a−1,n]

(
num[Lnext](Lt,z

q),zq′
)
+λa−1num[V an]

(
num[Lnext](Lt,z

q),zq′
)]

−ζa−1,j,n
)

∑J
i=1 e

1
ν

(
β
∑Q

q′=1
πqq′ [(1−λa−1)num[V a−1,i](num[Lnext](Lt,zq),zq′)+λa−1num[V ai](num[Lnext](Lt,zq),zq′)]−ζaj,i

)
La−1j

t

that allow the respective approximation errors to be computed:

ξV (Lt, z
q) =

∥∥num[V ] (Lt, z
q)− V̌ (Lt, z

q)
∥∥ , (23)

ξL (Lt, z
q) =

∥∥num[Lnext] (Lt, z
q)− Ľnext (Lt, z

q)
∥∥ . (24)

If the approximation errors are below a pre-specified level of tolerance, we have reached a

solution at the required precision. Otherwise, we increase the number of distributions P . A

finer grid of distributions increases the accuracy at which the piece-wise linear interpolation

of the system of MFGs (18)-(20) approximates the solution to the MFG (10)-(12) outside

the grid points (l1, ..., lP ).18

5.4 Comparison with existing approaches

Before taking the model to the data and presenting the quantification results, we pause to

compare our approach to the solution of dynamic spatial heterogeneous agents models with

other very recent developments. We discuss five alternative specifications, by addressing

the corresponding seminal contributions. We briefly comment on similarities and differences

with our methodology; we refer the reader to the cited work for a more complete assessment

of the methodologies.

a) Eigenvalue decomposition. Kleinman et al. (2021) develop a framework for the anal-

ysis of a dynamic discrete-choice migration model in which agents make forward-looking

investment decisions in discrete time. The approach is based on the following steps: (i)

characterization of the deterministic steady state; (ii) linearization around the steady state;

(iii) eigenvalue decomposition to characterize stationary transitional dynamics. This setup

is the closest (among those that we consider here) to the macroeconomic literature on het-

erogeneous agents models. The great advantage is tractability (both analytically and in the

18We discuss more about the intuition later, when we construct a quantification exercise that is parsimonious
enough to illustrate how the algorithm works; see paragraphs 7.2 and 7.3.
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interpretation of shocks), but this comes at the cost of considering only first-order changes

in the economic fundamentals, while second-order nonlinear terms drop out of the linearized

solution. However, the latter is at the heart of the present paper’s interest. Thus, to answer

our research question we must preserve the full non-linear structure of the model.

b) Sequence-space Jacobian. Auclert et al. (2021) provide an approach to solve general-

equilibrium heterogeneous-agents models that develop further the perturbation method in-

troduced by Reiter (2009). The latter approach is based on a linear perturbation of the

deterministic steady-state solution of a model with aggregate shocks. The innovation of

Auclert et al. (2021) is to write the problem not in a state-space representation (as in Reiter,

2009) but in terms of the full set of derivatives of equilibrium mappings around the steady

state. The obtained sequence of Jacobians is a sufficient statistic to compute deviations from

the steady state and the structure of the solution, which is linear in aggregates, guarantees

a fast solution algorithm.

This design is well suited for a typical macroeconomic context, in which the aggregate

outcome of individual decisions is summarized in a small set of prices. The key element

of the approach, a Jacobian, is appropriate to work with when the set of actions can be

summarized by continuous variables and their marginal increments. It is less suited for a

large spatial dynamic model, thus, for being used with a reallocation over a set of categorical

actions. Furthermore, this approach, as the previous one, relies on the existence of a steady

state around which the model is linearized. Thus, it is not tailored to account for the analysis

of uncertainty in highly non-linear models.

c) Continuous-time MFG. Bilal (2023) proposes a state-space approach that represents the

economy as a continuous-time MFG and treats aggregate uncertainty using a perturbation

method. First, the distribution of agents among heterogeneous allocations is treated as an

explicit state variable, thus, the MFG is a set of value functions defined on the space of

distributions and on the space of the aggregate stochastic state. Second, the dependence on

the aggregate stochastic state is simplified by considering perturbations around a determin-

istic steady state (higher-order perturbations are feasible, to serve the purpose of dealing

with aggregate uncertainty). Third, the Master Equation in the form of analytical local

perturbations around the deterministic steady state is approximated by a finite-dimension

representation on the discretized state space.

Our approach is also based on a state-space representation of a MFG defined on the space

of distributions and on its finite-dimension representation. However, the described method-

ology requires in addition to our setup: existence of a steady state; a differentiable value
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function describing the DOCP (in addition to be continuous, as we have it); infinitesimally

small time interval between making a decision and the aggregate consequences of that deci-

sion. The last assumption entails the largest difference to our approach. Our goal is to solve

a discrete-time MFG, whereas the methodology presented in Bilal (2023) is rooted in the

mathematics literature on continuous-time MFGs.19 Hence, this approach is not applicable

to our research question. Computational advantages in solving MFGs in continuous time

have been already documented in Achdou et al. (2021). But, in our context, their use would

come at the cost of restricting significantly the nature of uncertainty we would be able to

address.

d) Perturbation around the transition path. Fan et al. (2023) propose a local approximation

of a spatial dynamic stochastic equilibrium around the transition path predicted under per-

fect foresight. In contrast to other perturbation methods, it does not rely on the existence

of a steady state, as is the case with our approach. Two further similarities are the charac-

terization in discrete time and the tractability of aggregate uncertainty, there by means of

higher-order perturbations.

The fundamental difference to our approach is the representation of the equilibrium in

the sequence space as a local perturbation around the perfect-foresight path, while our setup

defines the economy as a MFG on the state space. This implies, first, that the law of motion of

the distribution is not a fixed point (that is the “verification role” played by the Kolmogorov

equation in our setup); and, second, value functions and policy functions there are expressed

as Taylor expansions of deviations along the stochastic path from the deterministic path,

while in our setup they are not approximated, neither around the steady state nor around

the deterministic transition path. Different goals motivate the two approaches: their setup is

designed for an equilibrium in which agents have believes about future exogenous states; our

approach characterizes the evolution of the economy for agents who take into account the

simultaneous deterministic evolution of the spatial distribution while making their decisions.

e) Machine learning. Han et al. (2022) propose an algorithm for the numerical solution of

large-scale heterogeneous agents models with aggregate shocks based on deep learning. In

the spirit of Krusell and Smith (1998), value functions and policies are defined on a set of

moments of the distribution of agents over the state (and not on the space of the distribution,

19For the sake of intuition, as solving a partial differential equation is a different task from solving a difference
equation, solutions to discrete-time MFGs are based on a different (and much scarcer) set of results than
their continuous-time analogues (for instance, the definition of a weak solution to the associated Hamilton-
Jacobi-Bellman equation – a partial differential equation – does not apply in discrete time).
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as in our case). Given this approximation, value functions and policy functions are computed

as solutions to the DOCP on simulated paths, in which moments of the distribution are

computed by means of neural networks.

The adoption of machine learning makes the approach efficient and flexible, although

this assessment is more robust when the state space is continuous (as in the canonical macro

setup that the machine-learning approach is designed for) rather than with a categorical

state space (as in spatial models). But this computational advantage comes at the cost

of solving a simpler problem than the one at hand, in which moments of the distribution

become sufficient statistics, ultimately selected by the neural network.

In essence, the approach that we propose solves a system of discrete-time MFGs by means

of an explicit scheme on the coupled system of Bellman equations and Kolmogorov equa-

tions, defined on the finite-dimension representation of the state space. In comparison to a

canonical perturbation method, the local approximation around a steady state (or a deter-

ministic path) is replaced by a barycentric interpolation on a grid of initial allocations, while

the discrete nature of the state allows for solving the Bellman equation, thus preserving the

non-linearity of the problem. Barycentric interpolation and functional form of the Bellman

equation are also sufficient to characterize the system of numerical MFGs as a contraction

mapping on a complete metric space. Then, an exact solution to the grid-valued system of

MFGs (14)-(16) is obtained by fixed-point iteration.

6 Taking the model to the data

We calibrate and simulate the model based on data of a specific country, France, which we

consider to be open to trade with the Rest of the World (ROW). Specifically, we consider

R = 22 French regions at the NUTS2 level in Eurostat’s nomenclature plus one constructed

ROW, S = 49 productive sectors corresponding to the classification used in WIOD, and

K = 2 occupational types. Regarding labor types, we distinguish between high-skilled labor

(defined as managers and professionals) and low-skilled labor (the rest). Data are collected at

an annual frequency between 2003 and 2014.20 Adding the skill (or worker-type) dimension

20We consider French administrative régions located in continental Europe, thus, excluding Corse and
Départements d’Outre Mer (the overseas departments). Among the WIOD sectors, we exclude primary
activities, mining, repairing services, arts and households activities. The information on characteristics of
the French population of workers and firms comes from two administrative datasets: Déclaration annuelle de
données sociales (DADS) and Statistique structurelle annuelle d’entreprises, (Ficus-Fare). The classification
of labor types is based on the Nomenclatures des professions et catégories socioprofessionnelles, published
by the French statistical office INSEE, in which managers and professionals correspond to skill groups 3 and
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k leads to 2, 254 jobs in total, of which 98 are located in the ROW. While workers throughout

the world matter for trade flows and, generally, supply and demand of outputs and other

inputs, we focus on the mobility of labor among the J = 2, 156 jobs within France.

In our data, we consider workers with age between 18 and 67 years in 2012. Among

those, we distinguish the two aforementioned age groups of workers, the “young” defined

as to be of an age below 40 years and the “old” with an age higher than 40 years. In our

baseline year, 40.8% of the French workforce is young and 59.2% is old. Accordingly, we

fix the idiosyncratic Poisson rates that discipline aging in the model such that the average

duration of an age spell for being young is 20 years. I.e., transiting to an old age involves an

arrival rate of λy = 0.05. The average duration of an age spell for being old is 29 years, with

old agents dying and dropping out of the population with an arrival rate of λo = 0.0345.

Given this parameterization, the rate at which the young cohort generates newborns is fixed

at an arrival rate of λ∗ = 0.05 such that the total population remains constant given the

observed composition by age in 2012.

Table 1: Arrival rates of idiosyncratic age shocks

parameter description value motivation
λ∗ arr. rate newborns 5% constant aggregate population
λb arr. rate newborns turning young 100% constant aggregate population
λy arr. rate aging for young 5% avg. duration young age spell is 20 years
λo arr. rate aging for old 3.45% avg. duration old age spell is 29 years

We describe the construction of all data and the procedures to obtain parameters in detail

in Appendix E. In the following, we give an intuition for the data employed, the identifying

variation exploited, and we present summary statistics on the parameters and fundamentals

used in the quantification exercise.

The quantification of the model aims at being in line with key economic fundamentals in

France in 2012. Based on all estimated fundamentals, the calibration of trade deficits will

ensure that real wages obtained in a within-period equilibrium given the actual distribution

of the labor force in France in 2012 and fundamentals match real wages observed in France

in that year. Note that we do not assume that this allocation of labor is a steady state. It

is a strength of our approach that we do not have to enforce this. Importantly, the aim of

our quantitative exercise is to assess the role of aggregate uncertainty. For this purpose, we

compare the evolution of the distribution of labor and lifetime welfare across jobs between

4 of the ISCO-08 classification published by the International Labour Organization.
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two alternative scenarios: perfect foresight versus uncertainty, while keeping the levels of

fundamentals (cost-share parameters, TFP levels, endowments, trade costs, and moving

costs) constant throughout.

6.1 Data requirements to quantify the model

The data sets employed to obtain the parameters governing the within-period equilibrium

include the annual structural statistics of companies for France (the FICUS-FARE dataset

published by INSEE), the French administrative employer-employee dataset Déclaration An-

nuelle des Données Sociales published by INSEE, and the WIOD data on input-output ta-

bles as well as their data on socioeconomic accounts and Eurostat’s European Road Freight

Transport Survey. Apart from these data, we need data on bilateral sales (trade flows) be-

tween all pairs of NUTS2 regions in France and the Rest of the World (ROW) (R = 22+ 1)

for every sector (WIOD sector S = 49). Moreover, we use data from Eurostat to measure

structures by region and sector. We will say more on the latter below.

For the intertemporal equilibrium, we also rely on the French administrative employer-

employee dataset Déclaration Annuelle des Donnees Sociales, as this dataset provides in-

formation on the employees and their wage in a given job j (i.e., region r, sector s, and

occupation/skill level k) in a given year t. Moreover, it contains information on the same

employees on their job j in the previous year t−1 as well as the wage earned then. Using data

for the pair of consecutive years of 2009-2010 and 2012-2013, we can compute transitions

between every pair of jobs j and n as well as associated wages for about 27 mln. workers per

year.

6.2 Observed spatial asymmetries

Beyond few parameters that are common across French regions and only vary at the sectoral

level (trade elasticities, θs, and consumption shares, αs), most parameters of the model

lead to spatial asymmetries across French regions. The model features five channels of

spatial asymmetries: (i) time-invariant factor-cost share parameters; (ii) frictions to the

mobility of agents, captured by time-invariant moving costs between all j = {rsk}- and

n = {r′s′k′}-indexed job pairs, ζjn; (iii) trade frictions within France and internationally,

captured by time-invariant trade costs between all rs-indexed region-sector pairs, τ rs,r
′s; (iv)

region-sector-specific endowments, captured by time-invariant stocks of structures Hrs, and

the initial distribution of labor by type across regions and sector, Lrsk
0 ; (v) region-sector-
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specific, time-varying total factor productivity (TFP), Ars
t . Agents are uncertain about

future realizations of TFP. Therefore, after calibrating overall TFP, we isolate its stochastic

component, arst , from the deterministic one, and we model its dynamic stochastic process at

the region-sector level.

The next five numbered paragraphs are dedicated one each to these ingredients. Together

with consumption and trade-elasticity parameters, these ingredients inform exhaustively the

given fundamentals of the model: agents are assumed to be rational, thus, they “know the

model”, including frictions, endowments, the deterministic technology component, and the

stochastic process of technology shocks.

(i) Consumption shares, trade elasticity, and factor-cost shares. In order to in-

form the cost-share parameters of the model (ϵsk, ξrs, γrs, and γrs,rs
′
), we rely on worker,

accounting, and input-output data for France. Table 2 describes values of parameters for

production and consumption that vary at the level of 49 sectors or at the level of 1,127

region-sector pairs, of which 1,078 are within France. The Table contains information on

consumption shares and the trade elasticity that are obtained from WIOD data and taken

from Caliendo and Parro (2015), respectively.21

Table 2: Summary statistics for consumption and production parameters

# units mean std.dev. p10 p50 p90

Consumption share αs 49 0.020 0.035 0.001 0.006 0.071
Trade elasticity θs 49 5.816 6.869 2.550 4.550 9.270
Labor share γrs(1− ξrs) 1,127 0.267 0.132 0.113 0.245 0.452
Structures share γrsξrs 1,127 0.425 0.169 0.225 0.398 0.689

Materials share
∑S

s′=1 γ
rs,rs′ 1,127 0.307 0.215 0.046 0.297 0.602

Note: The statistics “# units”, “mean”, “std.dev.”, “p10”, “p50”, and “p90” refer to the number of units
at which the data vary, the mean, the standard deviation, and the 10th, 50th, and 90th percentiles of the
data across the units.

(ii) Moving costs. Moving costs are estimated from observed job-to-job transitions in

France, following the 2-stage procedure proposed in Artuç and McLaren (2015).22 First,

21Details on the measurement of all parameters are provided in Appendix E.
22For a detailed discussion of the methodology, we refer the reader to Artuç and McLaren (2015). In Appendix
E we report more details about our application of it.
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Equation (3) capturing the optimal policy in terms of moving shares is estimated by Pois-

son pseudo-maximum-likelihood (PPML) estimation: origin-year and destination-year fixed

effects capture the expected continuation value of jobs, moving costs are parameterized and

fitted using geographical distance between regions and some binary indicators for switching

region, sector, or occupation. In a first stage, this yields an estimate of moving costs, which

is scaled by β/ν. In a second stage, an estimate for the inverse of the moving elasticity

ν = 4.5281 is obtained by fixing the discount factor parameter to β = 0.95 and using the

model-implied utility based on measured real wages and an assumed form of utility (here,

log-utility).

Table 3: Summary statistics for moving costs

mean std.dev. p10 p50 p90

Mov. costs overall ζrsk,r
′s′k′ 118.13 56.58 22.46 150.57 154.07

Mov. costs between regions ζrsk,r
′sk 12.10 0.80 11.06 12.23 12.94

Mov. costs between sectors ζrsk,rs
′k 110.40 59.29 10.13 144.48 147.80

Mov. costs between occupations ζrsk,rsk
′

8.93 0.19 8.73 8.92 9.18

Note: The reported estimates refer to a log-utility specification with ν = 4.5281 and β = 0.95. The statistics
“mean”, “std.dev.”, “p10”, “p50”, and “p90” refer to the average, the standard deviation, and the 10th,
50th, and 90th percentiles of the data across the units.

Table 3 provides descriptive statistics of the estimated moving costs. Job-to-job flows

between 2012 and 2013 indicate that, on average, 98.2% of the agents in a given job do not

move to other jobs from one year to another. Overall, moving costs are smaller for changing

occupation only within the same region and sector. In the subsample with moving costs

below the 10th percentile cutoff, moving costs are higher for changing the sector, and they

are slightly higher for changing the region. In the rest of the distribution, mobility frictions

increase when changing the sector, while the cost of moving between regions or occupations

remains flat.

(iii) Trade costs. We calculate trade costs by means of the Head-Ries index (Head and Ries,

2001) using interregional sales and purchases between regions r and r′ in sector s, Xrs,r′s

and Xr′s,rs, normalized by the intraregional absorption, Xrs,rs and Xr′s,′s:

τ rs,r
′s =

(
Xrs,rsXr′s,r′s

Xrs,r′sXr′s,rs

)1/(2θs)

.
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Computations are conducted for the year 2012, and interregional flows between regions within

France are based on Eurostat’s European Road Freight Transport Survey (ERFTS).

Table 4: Summary statistics for trade costs

mean std.dev. p10 p50 p90 Vreg Vsec

Trade costs within France τ rs,r
′s 2.913 2.498 1.251 2.282 4.899 46.9% 26.8%

Trade costs with ROW τ rs,ROWs 25.981 134.869 2.763 5.535 15.452 7.5% 58.7%

Note: Own computations based onWIOD, Eurostat’s ERFTS and Caliendo and Parro (2015). The statistics
“mean”, “std.dev.”, “p10”, “p50”, and “p90” refer to the average, the standard deviation, and the 10th,
50th, and 90th percentiles of the data across the units. Vreg and Vsec are the percentages of the variation in
trade costs explained by region- and sector-fixed effects, respectively.

Table 4 provides descriptive statistics on computed trade costs. Barriers within France are

not negligible, although the costs of trading with the ROW are at least twice as high for any

French region and on average more than eight times higher than for domestic interregional

trade. The last two columns report on a variance decomposition, showing the percentage of

the variance in trade costs explained by regions, Vreg, and sectors, Vsec. Within France, the

regional component explains most of the variation, while trade costs of French regions and

sectors with the ROW are mostly explained by the sectoral variation.

(iv) Endowments. From French administrative matched employer-employee data (DADS)

and balance-sheet data (Ficus-Fare) we compute the fraction of the employment of labor in

hours by region, sector, and occupation in the baseline year, that is Lrsk
2012. Panel (a) in

Figure 6.1 reports on the distribution of the labor bundle Lrs
t ≡ (Lrs1

2012)
ϵsk(Lrs0

2012)
1−ϵsk across

the French regions, where we weight each sector’s contribution by the employment share of

this sector in a region. Using two sources of data in Eurostat, Land Use Overview by NUTS

2 Regions and Annual National Accounts, Breakdowns of Non-financial Assets by Type, In-

dustry and Sector, we measure the land use in square kilometers by sector and region in

France. Using data on total fixed assets (in gross terms, according to the European System

of Accounts 2010) by sector in the country, we use the share of assets by sector times sectoral

and regional land use in the year 2012 as our measure for the units of structures used by

region and sector, Hrs. In Panel (b) of Figure 6.1 we report on the distribution of structures

across French regions averaged over sectors using sector-level employment weights.

v) Productivity. In measuring region-sector-specific TFP, we follow Caliendo et al. (2018),

whose intratemporal production equilibrium is fully consistent with the one considered
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(a) Labor in 2012 (b) Structures in 2012

Figure 6.1: Sector-weighted average distribution of production factors across French regions

here.23 Based on the aggregate sector-region-level production function implied by the within-

period equilibrium, we calculate the region-sector-specific TFP as a Solow residual, using

data on aggregate output, Y rs
t , inputs, Hrs

t , L
rs
t ,M

rs
t , price indices, P rs

t , domestic absorption,

πrs,rs
t , as well as production function parameters to identify all components in real terms:24

Y rs
t

P rs
t

=
Ars

t

Γrs (πrs,rs
t )

1
θs

[
(Hrs

t )γ
rsξrs (Lrs

t )γ
rs(1−ξrs) (M rs

t )1−γrs
]
. (25)

Panel (a) of Figure 6.2 reports on the distribution of measured TFP, Ars
t , across French

regions aggregated over sectors using employment-based weights. According to the figure,

the south of the country (where manufacturing dominates) and Île de France, the region of

Paris (the center of financial services), emerge as the areas with the highest productivity

levels.

The proposed model is flexible regarding the origins of TFP. We specify its level as a

function of time-invariant components that vary at the sector and region level, annual varia-

tions that are common across France, and a component that is a function of labor employed

in a region and sector (see, e.g., Desmet et al., 2018 for the latter). This specification treats

TFP as a function of the pre-determined agglomeration of labor Lrs
t in a region-sector.25 To

23 In particular, we define trade flows and value-added shares exactly as in Sections 3.3 and 4 in
Caliendo and Parro (2015), and we follow Section 4 in Caliendo et al. (2018) in measuring TFP.

24All details on the derivation of Equation (25) and the data employed are presented in Appendix E
25Note that this is consistent with the model, where the labor allocated to a certain region and sector at time
t is the deterministic consequence of the distribution of labor and TFP realizations at time t− 1. Through
the lens of the model, the labor allocation Lrs

t is exogenous to the actual realization of technological shocks
at time t.
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(a) Measured TFP in 2012 (b) Stochastic component of TFP in 2012

Figure 6.2: TFP across French regions

isolate the stochastic part and the deterministic part of TFP, we purge TFP of any common

time-varying variation in TFP across France (captured by time-fixed effects) as well as the

component pertaining to the pre-determined agglomeration of labor:

lnArs
t = κ lnLrs

t + δr + δs + δt + ηrst , (26)

where κ is the elasticity of measured TFP to labor allocation, δr, δs, and δt are, respectively,

region-, sector-, and year-fixed effects. The variation in measured TFP explained by these

components together is 78.6%. The parameter estimate κ̂ = 0.028 is small but statistically

significant. Hence, an agglomeration of labor boosts TFP as in Desmet et al. (2018). Log

labor explains somewhat less than 1% of the total variation in log TFP. We define the

stochastic component of TFP as the region and sector-specific components of measured

TFP plus the residual in (26):

ln arst = δr + δs + ηrst . (27)

Panel (b) in Figure 6.2 reports on the distribution of the stochastic component of TFP,

arst , across French regions after aggregating using sector-level employment weights. Differ-

ences with respect to the overall measured TFP in Panel (a) of the figure are modest in

magnitude.26

Using the panel data on ln arst for the years 2003-2014, we postulate and estimate the

26Clearly, the variance of the stochastic component arst is smaller than that of overall TFP Ars
t . Hence, by

considering only arst to inform the degree of uncertainty, we reduce the scope for uncertainty to play a role
relative to a model which would rely on Ars

t altogether.
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following autoregressive process that informs the uncertainty process about realized TFP

levels:

ln arst = µrs + ρ ln arst−1 + ιrsεrst , (28)

where εrst ∼ i.i.d.(0, 1), ρ is a common autoregressive coefficient, the region-sector-fixed effect

µrs scales the mean of the process, and ιrs parameterizes the region-sector specific volatility

that tunes the degree of uncertainty about region-sector TFP.27 As long as |ρ̂| < 1, the process

in (28) is stationary. Then, ln ars ≡ µ̂rs/(1− ρ̂) and σrs ≡ ι̂rs/
√

1− ρ̂2 are, respectively, the

asymptotic long-run mean and standard deviation of the stochastic component of TFP in

region-sector rs.

Table 5: Summary statistics for the dynamic process of ln(arst )

mean std.dev. p10 p50 p90

Long-run mean ln ars 2.436 0.108 2.318 2.438 2.543
Long-run std.dev. σrs 0.056 0.058 0.015 0.037 0.117

Note: The statistics “mean”, “std.dev.”, “p10”, “p50”, and “p90” refer to the average, the standard
deviation, and the 10th, 50th, and 90th percentiles of the data across region-sector units. The long-run
means and standard deviations in the rows are computed per region-sector unit rs over time.

Table 12 reports on the identified moments of ln(arst ), where the estimate of the autoregressive

coefficient is ρ̂ = 0.503, and the volatility ι̂rs is estimated as the root mean-squared error of

the residual based on (28). Panel (a) of Figure 6.3 reports on the distribution of the weighted

long-run mean, ln ars, across French regions, and Panel (b) reports on the weighted long-run

standard deviation, σrs, where weights reflect sector-level employment in each region.

6.3 Calibration and assessment of parameters used in the quan-

tification

Note that the cost-share parameters, trade costs, migration costs, endowments, and TFP

levels are derived from real-world data based on equilibrium relationships implied by the

model. Following the approach of Dekle et al. (2008), we invert the within-period equilibrium

given the observed vector of region-sector-specific wages {w̄rs
t0
}R,S
r=1,s=1 and labor allocations

27 If the panel were very short, we would inherit the well-known Nickell (1981) bias in the estimate of ρ. The
latter fades as the number of years grows, and we ignore it here. One could alternatively use instrumental-
variation, but the latter also exhibits a small-sample bias.
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(a) Long-run mean, ln ars (b) Long-run standard deviation, σrs

Figure 6.3: Spatial variation of moments of the process for the stochastic component of TFP

{Lrs
t0
}R,S
r=1,s=1 across jobs in the baseline year t0 = 2012, and given the estimated long-run

mean of the stochastic component of TFP levels {ars}R,S
r=1,s=1, to obtain model-consistent

regional trade deficits {Dr
t0
}Rr=1. This provides an initial equilibrium allocation calibrated to

the observed economy in the baseline year 2012.

In order to assess the parameters used to quantify the model, we perform a number of

validation exercises. Since the model takes the initial allocation of the economy as given,

we want to be sure that units of labor, structures and materials that the calibration implies

match the salient features of the French economy in the base year 2012. To this purpose we

compare the endowment variables we feed into the model with evidence that we did not use:

the number of employees (rather than hours of employment) and the number of firms by

sector and region in France, reported by Eurostat in Regional structural business statistics.

Industry, trade and services.

Of course, we expect a high, positive correlation for worker and employee numbers with

the hours worked, since we are using hours of labor from matched employer-employee admin-

istrative data. But note that what informs the model are units of a Cobb-Douglas bundle of

hours of employment of skilled and unskilled workers. Thus, the functional form of produc-

tion and the skill composition are not necessarily predicting more units of the labor bundle,

where we also observe more people employed. A similar argument can be made for materi-

als: the model counts a unit of intermediate inputs as a Cobb-Douglas bundle of products

sourced within a region, between regions and internationally, but the spatial correlation with

observed economic activity can be checked. For structures, where we rely on Eurostat data

on land use and data on fixed assets by industry in the quantification exercise, we can check,

whether this metric correlates well with employment and firms present in those regions and
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sectors that use this and other factors intensively.

(a) Labor bundle (b) Structures (c) Materials

Figure 6.4: Correlation of model-based quantities with observed number of employees

(a) Labor bundle (b) Structures (c) Materials

Figure 6.5: Correlation of model-based quantities with observed number of firms

Figures 6.4 and 6.5 report 100-bin scatter plots of model-based quantities of labor-bundle

employment in hours, of structures, and of materials (in logs on the vertical axis, Panels (a),

(b) and (c), respectively) versus the number of employees and the number of firms (in logs

on the horizontal axis) in 2012. The strong correlations suggest that the calibration of the

model is meaningful in matching the observed spatial variation of economic activity in the

respective total-employment and firm-numbers domains.

Along the same lines, one can compare how real output by region and sector that is

constructed based on Equation (25) using the data for the quantification exercise correlates

with observed economic activity obtained from Eurostat data. Figure 6.6 reports 100-bin

scatter plots of model-based quantities of output (in log on the vertical axis) constructed

using the stochastic component of TFP, arst , as in the quantification instead of measured

TFP, Ars
t , versus the observed number of employees and firm numbers (in logs, panel (a)

and panel (b), respectively) in 2012. Also in this case, correlations suggest a good match

between the spatial distribution of real output used in the quantification of the model and

35



(a) Employees (b) Firms (c) Measured real output

Figure 6.6: Correlation of model-based real output with observed economic activity

the observed spatial variation of economic activity. In Panel (c) we show the correlation

between the constructed real output (in logs, vertical axis) and the real output that are

consistent with measured TFP (in logs, horizontal axis), in 2012. For the same year, the

correlation across region-sector pairs between the two respective measures ln arst and lnArs
t is

49.2%. While the correlation is – not surprisingly – positive, it indicates that the conditional

mean of lnArs
t accounts for a large share of the variance in lnArs

t that is not used in ln arst .

The last evidence is about the relationship between observed real wages and price indices

with the estimated stochastic component of TFP, ln arst . The goal is now to gain insights on

the implications of the stochastic component of TFP only, rather than of overall measured

TFP, for prices and real wages. In the same Eurostat data used for the previous analysis,

we observe labor costs at the region-sector level, apart from the number of employees. The

ratio of these statistics provides a proxy for the nominal gross annual wage earnings per

person employed in a given region and sector. Let us refer to the latter as W rs
t . Region-

sector-specific price indices as used in quantifying the model are combined according to

the Cobb-Douglas consumption-based price index assumed by the model to obtain a region

specific price index; let us refer to this as P r
t . The ratio W rs

t /P
r
t is a model-consistent

measure of observed average real wage in region-sector rs.

The 100-bin scatter plots in Figure 6.7 show the year-2012 correlations of the estimated

stochastic component of TFP, ln arst on the vertical axis, with price indices lnP r
t , and real

wages lnW rs
t /P

r
t across regions and sectors in Panels (a) and (b), respectively. Region and

sector pairs characterized by higher TFP exhibit a lower price index. Real wages are strongly

positively correlated with the stochastic component of TFP.
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(a) Price index (b) Real wage

Figure 6.7: Correlation of stochastic component of TFP with price index and real wage

7 Quantifying the role of aggregate uncertainty

The focus of the quantification is to illustrate the evolution of the dynamic spatial equilibrium

of the model under uncertainty versus perfect foresight for a given initial condition. We

will investigate the evolution of welfare and labor allocation over time for an uncertainty

scenario and a perfect-foresight scenario. The ideal exercise to quantify a departure of the

equilibrium allocation from the perfect foresight due to uncertainty alone is to evaluate the

model under both regimes given the same initial allocation at time t0 and with the same

future realizations of economic fundamentals for all periods t ≥ t0. By keeping fundamentals

constant throughout, dynamics in terms of labor reallocation arise in both scenarios as the

initial distribution of labor is not in a steady state, and differences in the evolution of the

labor force allocation across the two scenarios emerge solely due to the uncertainty of agents

about the realization of TFP in the future. Hence, the only mechanism at work across

scenarios is that agents make different optimal forward-looking decisions under uncertainty

than under perfect foresight, and this determines a different distribution of labor across jobs.

In what follows, we will use t0 to indicate the initial period from which we will let the

model run forward in both the perfect-foresight and the uncertainty cases. Note that this

initial year corresponds almost fully to the estimated model as of 2012. However, there are

three exceptions: we assume that each region-sector pair rs realizes from t0 onwards ad

infinitum the long-run TFP level which is consistent with the estimates of the TFP process

for each rs; we assume that stochastic shocks around this mean are assumed by the agents

to be drawn from the long-run standard deviation with the nodes of a gridded distribution

following the Tauchen method under uncertainty as described below;28 and we calibrate

28More precisely, the stochastic component can be drawn arbitrarily from the chosen support. However, we
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deficits across regions such that the intratemporal real-wage equilibrium corresponds to the

data of 2012 at t0. None of the fundamental model parameters will change from t0 onwards,

but outcomes may and do adjust during t > t0.

7.1 Counterfactual

In the present context, “aggregate uncertainty” materializes through the stochastic compo-

nent of TFP, i.e., the unexpected part of it. The latter is indexed at the region-sector level.

Accordingly, scaling the stochastic component of TFP entails a common shock to all individ-

uals in the same sector and region, irrespective of their age or job. The natural alternative or

benchmark to a regime with aggregate uncertainty is one that assumes “perfect foresight”.

Under both regimes, agents have complete knowledge of the model and of the data until t0.

However, under perfect foresight agents have complete and accurate information not only

about the past and present but also about future model outcomes and data in t > t0. In-

stead, under uncertainty agents form expectations based on their knowledge of the stochastic

process (28).

7.2 A simple design for modeling aggregate uncertainty

By design, the economy starts at given long-run means for the stochastic component of TFP

arst = ars at t = t0, and it will evolve with zero random innovations, εrst = 0 for every period

t and every region-sector pair. This provides a controlled environment in which there is no

change in the fundamentals of the economy. We wish to compare predicted outcomes of

the model when agents take volatility of the TFP process into account in the uncertainty

regime, with the perfect-foresight regime where agents do not take random shocks to TFP

into account, when planning, as the probability of random shocks is zero. Risk-averse agents

are rational and “know” the random dynamic process of the stochastic component of TFP

in (28). Therefore, the effect of uncertainty is measured by comparing outcomes predicted

by the model informed with the estimated long-run mean and volatility parameters with

outcomes predicted by the model given zero volatility.

The economy is characterized by a vector of (R + 1) · S stationary random processes,

thus, the parameters σrs are the (squared) diagonal elements of the covariance matrix of

a vector-autoregressive process (VAR) with region-sector-specific innovations. By modeling

pick ex post exactly that draw, which corresponds to the long-run mean. Hence, the realization of TFP is
fixed at the long-run mean in every period t ≥ t0 also under uncertainty. But the agents do not foresee this.
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and estimating the covariance matrix, one could disentangle the role of local uncertainty

with σrs > 0 for a given region-sector pair (rs) but σr′s′ = 0 for all (r′s′) ̸= (rs), or global

uncertainty with σrs > 0 in all region-sector pairs jointly. One could also design experiments

that combine these extremes. We focus on the case of global uncertainty with the world being

in one of three states of nature.29 Note that this stochastic process describes the stochastic

component of TFP, i.e., arst , whereas measured productivity, i.e., Ars
t , will in general exhibit

spatial and time correlation patterns as an endogenous outcome of the model, a consequence

of the deterministic labor reallocation across jobs over time.

Table 6: Nodes of the Markov chain for
arst

node 1 node 2 node 3
relative to median 0.866 1 1.144
median 9.917 11.453 13.097
std.dev. 2.098 1.219 2.140

Table 7: Transition probabilities

from \to node 1 node 2 node 3
node 1 0.5003 0.4994 0.0003
node 2 0.0416 0.9168 0.0416
node 3 0.0003 0.4994 0.5003

We proceed with a parsimonious configuration that approximates the (R+1) ·S processes

in (28) with a Markov chain for the standardized moments using the Tauchen (1986) method

with Q = 3 nodes for the aggregate stochastic state of TFP. Table 6 reports the median and

standard deviation across region-sector pairs within each of the three nodes of the Markov

chain. The first row of the table reports on the median within each node relative to the

median of the central node. Table 7 summarizes the transition probabilities between the

nodes of the chain. Nodes for the stochastic component of TFP are within a range of

15% around the long-run mean, and agents attach a probability of 91.68% to a stochastic

component of TFP that remains at its long-run mean, i.e., arst+1 = ars conditional on arst =

ars. The associated transition probabilities of stochastic TFP between the considered nodes

generate a stochastic TFP support that is centered without large deviations around expected

29More sophisticated modeling choices remain tractable. The “vector case” in Tauchen (1986) accommodates
vector autoregressions in which realizations of the stochastic component in a region and sector, ln arst , are a
random function of previous own levels ln arst−1 but also previous levels in other region-sector pairs, e.g., ln ar

′s
t−1

or ln ars
′

t−1 or ln ar
′s′

t−1. The extension of these methods developed by Terry and Knotek (2011) accommodates
the case of arbitrary positive-semidefinite covariance structures of the innovations. These methodologies can
be computationally intense for a large number of region-sector pairs, but recent developments are useful to
conduct efficient VAR discretizations, that also accommodate granularity typical of joint probabilities on
large dimensional stochastic spaces; for instance, see Gordon (2021). An assessment of those techniques is
out of the scope of this paper, but all of them provide a quite accurate approximation of first-order VARs
with transition probabilities on a finite (reasonably small) number of realizations on the stochastic support;
respectively, πq,q′ and zq for q, q′ = 1, ..., Q in the notation of Section 5.
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TFP, that coincides with the perfect-foresight scalar-valued counterpart for each region and

sector.

Overall, this level of uncertainty can be considered relatively conservative compared to

perfect foresight. Agents not only correctly predict the expected value of TFP but also

anticipate its reasonably small variance in the exercise.

7.3 Distribution of labor across jobs

The distribution of labor across jobs is the aggregate deterministic state of the MFG, and

in the initial allocation in period t0 it is given by the observed distribution. Additionally,

we have to select alternative distributions of labor across jobs for interpolating the payoffs

associated with forward-looking decisions under uncertainty as described in Section 5.3.

A choice for the basis of distributions should be such that the solution of the model (for

the initial period t0 and for all periods thereafter) likely belongs to its convex hull. Given

this guideline, we consider P = 5 distributions: l1 is the observed distribution of labor across

jobs in 2012, and the remaining ones are implied by the solution of the myopic DOCP in

which agents make their decisions, assuming that the next-period distribution is equal to the

current one.30 Call ∆L = L̃1 − L0 the difference between the one-period-ahead solution of

the myopic problem and the initial allocation. Then, l2 = L0 +∆L is the one-period-ahead

myopic solution and l3 = L0−∆L is the distribution obtained by computing changes from the

myopic solution in the opposite direction. Finally, distributions l4 = M̃25L0 and l
5 = M̃50L0

are, respectively, the 25th- and 50th-period-ahead solutions of the myopic problem with M̃

being the one-period policy of the myopic DOCP.

This setup is sufficiently rich to compute the numerical solution of the MFG with accu-

racy, and it is sufficiently parsimonious to illustrate the solution algorithm. As discussed in

Section 5, the numerical solution is obtained by iteration on the system of P ·Q = 15 MFGs,

each with an initial allocation (lp, zq) for p = 1, ..., 5 and q = 1, ..., 3. We start by guessing

that the next-period distribution of labor across jobs is equal to the current distribution.

Then, the algorithm proceeds as follows. At each iteration, the next-period distribution

implied by the Kolmogorov operator given the current guess of value functions is used in

the next iteration to interpolate the updated guess of value functions. Table 8 reports the

30The myopic problem is not an MFG, since it consists only of the Bellman equation, and it is not an equi-
librium, since the next-period distribution implied by the aggregation of individual decisions does not cor-
respond to the current distribution, as assumed by the agents. However, the myopic problem still contains
information about all the economic fundamentals of the MFG (e.g., preferences, technologies, frictions), and
it can be solved directly by value-function iteration on the Bellman equation.
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average barycentric weights of each distribution (listed on the columns) over the iterations.

This is done for each initial labor allocation in Panels (a)-(e) and for each realization of the

stochastic state in the rows. Barycentric weights for a next-period distribution L implied

by the Kolmogorov equation are constructed by first selecting the two distributions among

(l1, ..., lP ), whose convex hull contains the largest fraction of L, and then computing the

weights using uniform distance.

The structure that emerges from this procedure is one of a network. For the solution of

the MFGs with given initial labor allocation L0 = l1 (that is the distribution of labor across

jobs in France in 2012, here), the algorithm interpolates on the basis l1 and l4 predominantly

(i.e., across the considered stochastic states of TFP), while l2 contributes only when the

initial aggregate stochastic state is Z0 = z2. The basis distributions l3 and l5 are never

selected as to be the closer ones to the solution of the Kolmogorov equation. However, to

compute the solution for the value of MFGs with given initial labor allocation L0 = l4, the

algorithm selects the basis l5 (together with l1, l2 and l4). And to compute the solution of

MFGs with given initial labor allocation L0 = l5, the algorithm selects the basis l3 as well.

On a customary laptop, the algorithm computing the solution of the system of 15 MFGs

converges after 133 iterations in less than 500 seconds to a solution which exhibits a tolerance

of less than 10−5 for the sup distance of the vector value functions (whose average is 88.19)

and less than 10−9 for the sup distance on the labor distribution (whose average is 4×10−5).

This illustrates how to obtain the solution to the numerical MFG (14)-(15), given L0.

With the distribution L1 predicted by the model, the piece-wise linear interpolation (18)-(20)

can be computed to evaluate the evolution of the MFG, hence, L2, and so forth. This allows

us to evaluate the transitional dynamics of the model and deal with patterns that are due to

the initial allocation not being a steady state. Specifically, to let the memory of the initial

allocation vanish, we simulate 100 years after 2012. Despite the parsimonious setup, the

approximation errors on both the Bellman operator (23) and the Kolmogorov operator (24)

remain below 1% over the entire simulated period. With this level of accuracy, we proceed

and examine the results.

7.4 Results

In presenting the results of the quantification exercise, we start from the main message

and then explain the mechanisms at work. We initialize the model with the allocation of

labor across regions, sectors, and occupations in France as of 2012 and with the stochastic

component of TFP pertaining to the region-sector-specific long-run mean. We then solve
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Table 8: Average barycentric weights across iterations

l1 l2 l3 l4 l5

initial aggregate stochastic state is Z0 = z1 0.9028 0 0 0.0972 0
initial aggregate stochastic state is Z0 = z2 0.8962 0.0075 0 0.0963 0
initial aggregate stochastic state is Z0 = z3 0.9028 0 0 0.0972 0

a. initial labor allocation is L0 = l1

l1 l2 l3 l4 l5

initial aggregate stochastic state is Z0 = z1 0.7943 0.0066 0 0.1991 0
initial aggregate stochastic state is Z0 = z2 0.7878 0.0141 0 0.1982 0
initial aggregate stochastic state is Z0 = z3 0.7943 0.0066 0 0.1991 0

b. initial labor allocation is L0 = l2

l1 l2 l3 l4 l5

initial aggregate stochastic state is Z0 = z1 0.0066 0.5609 0.4317 0.0009 0
initial aggregate stochastic state is Z0 = z2 0 0.5683 0.4317 0 0
initial aggregate stochastic state is Z0 = z3 0.0066 0.5609 0.4317 0.0009 0

c. initial labor allocation is L0 = l3

l1 l2 l3 l4 l5

initial aggregate stochastic state is Z0 = z1 0.0066 0.3218 0 0.0009 0.6707
initial aggregate stochastic state is Z0 = z2 0 0.3293 0 0 0.6707
initial aggregate stochastic state is Z0 = z3 0.0066 0.3218 0 0.0009 0.6707

d. initial labor allocation is L0 = l4

l1 l2 l3 l4 l5

initial aggregate stochastic state is Z0 = z1 0.0066 0.5106 0.4819 0.0009 0
initial aggregate stochastic state is Z0 = z2 0 0.5181 0.4819 0 0
initial aggregate stochastic state is Z0 = z3 0.0066 0.5106 0.4819 0.0009 0

e. initial labor allocation is L0 = l5

Note: This table reports average barycentric weights for the P = 5 distributions of jobs and Q = 3
realizations of the aggregate stochastic state that serve as the basis for discretization.

the model under two alternative regimes: under aggregate uncertainty, with the matrix of

transition probabilities between aggregate TFP states as given in Table 7, and under perfect
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foresight, where agents (correctly) attach a probability of one to the event of a stochastic

component of TFP equal to its long-run mean everywhere. For all scenarios, we assume

agents’ relative-risk-aversion parameter to be χ = 1 which corresponds to log utility.

Tables 9 and 10 report moments of the distribution of percentage changes in lifetime

values of all jobs between the two regimes for agents in the old age spell and the young age

spell, respectively. A negative sign indicates a lower value associated with the uncertainty

regime. The numbers in the table suggest that, on average, uncertainty entails a welfare loss:

evaluated in t0, the average present-discounted lifetime value of a job falls by −0.20% for an

old agent and by −0.44% for a young agent due to uncertainty alone. The aggregate welfare

loss is due to two important forces. First, for risk-averse agents the chance of negative

productivity shocks entails welfare losses. Second, akin to the effect uncertainty has in

other macroeconomic contexts such as investment decisions, arbitrage mechanisms across

jobs are less effective because of a slower reallocation which quasi imprisons agents in bad

locations. However, a rich set of findings emerges regarding the heterogeneity of the impact

of uncertainty across jobs and over time.

Table 9: Change in lifetime value of a job, uncertainty minus perfect foresight in percent for
the old age spell

mean std.dev. p1 p10 p50 p90 p99

to -0.20 3.77 -5.456 -0.563 -0.029 0.859 3.829
10 years after -0.19 3.72 -5.67 -0.762 -0.022 0.93 4.062
50 years after -0.22 3.78 -6.80 -1.316 -0.013 1.288 5.119
100 years after -0.28 3.93 -7.94 -2.017 -0.010 1.543 6.463

Table 10: Change in lifetime value of a job, uncertainty minus perfect foresight in percent
for the young age spell

mean std.dev. p1 p10 p50 p90 p99

to -0.44 5.31 -17.034 -0.964 -0.031 1.198 4.368
10 years after -0.44 5.30 -17.019 -1.126 -0.025 1.231 4.560
50 years after -0.46 5.30 -17.024 -1.455 -0.019 1.498 5.190
100 years after -0.50 5.32 -17.086 -1.967 -0.018 1.782 5.821

Importantly, not all jobs yield lower present-discounted lifetime values, but some become

more attractive compared to the perfect-foresight scenario and are then comparatively better

off. Hence, there are comparative winners from uncertainty. Evaluated at t0, the old-age-

spell uncertainty-to-perfect-foresight welfare differences range from −5.46% to +3.83%. The
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young-age-spell support of differences is even bigger and ranges from −17.03% to +4.37%. In

a spatial setting as considered here, this heterogeneity in the welfare effects leads to a differ-

ent allocation of labor across space even with an identical realization of fundamentals, hence,

purely because of uncertainty. To be more precise: (i) differences in fundamentals (structure

endowments, mobility and trade costs, etc.) translate an identical degree of uncertainty

across jobs into heterogeneous welfare effects and associated labor-distribution responses

with winners and losers (due to response heterogeneity); (ii) differences in uncertainty lead

to heterogeneous welfare effects and associated labor-distribution responses with winners and

losers (due to treatment heterogeneity); (iii) and differences in uncertainty as well as fun-

damentals lead to heterogeneous welfare effects and associated labor-distribution responses

with winners and losers (due to an interaction of treatment and response heterogeneity).

In an aggregate macroeconomic environment without multiple spatial units a state is

either preferable or not. In such a setting, relatively low uncertainty does not emerge as a

source of comparative advantage which can be preferable to a situation with perfect foresight

for some jobs. With agents disliking uncertainty, a scenario with perfect foresight would be

preferable. But with spatial units that are connected via mobility (as well as trade), the no-

tion of an absolute welfare loss from uncertainty is accompanied by one of relative uncertainty

as a source of comparative advantage (in its interaction with deterministic fundamentals).

Here, each spatial unit is affected differently by uncertainty (treatment heterogeneity),

and the equilibrium that links all spatial units induces complex interactions of this uncer-

tainty in terms of its implication for labor reallocation (response heterogeneity). The two

types of heterogeneity lead to reallocations that can ceteris paribus make agents in some jobs

even better off on average under uncertainty than under perfect foresight. The quantitative

difference in the attractiveness of jobs between uncertainty and perfect foresight is huge here,

as can be seen from the standard deviation in welfare differences across jobs being one order

of magnitude larger than the mean. This implies that the ranking of jobs in terms of their

attractiveness and their relative differences changes in important ways. Given the same level

of moving costs and idiosyncratic preferences, this will lead to different optimal location

decisions under the two regimes even at the same level of fundamentals in all places. In this

sense, uncertainty shapes the spatial economy.

One way to see how uncertainty shapes the spatial economy is by looking at Figure 7.1

where we present the distribution of each job’s size under uncertainty relative to perfect

foresight after 100 years. A substantial share of jobs is either substantially smaller or larger

compared to a perfect-foresight scenario in terms of employment. These differences emerge
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due to the different attractiveness of jobs across scenarios as illustrated in Figure 7.2 which

presents a scatter plot of the rank of jobs in terms of their lifetime value across scenarios for

old (left panel) and young (right panel), respectively.

Figure 7.1: Size of jobs under uncertainty and perfect foresight.

Scatter plot of job rank Scatter plot of job rank
in terms of lifetime value for old in terms of lifetime value for young

Figure 7.2: Ranking of jobs under uncertainty and perfect foresight.

Tables 9 and 10 show that the patterns of uncertainty-to-certainty differences are persis-

tent and do not vanish with labor reallocation. Even 100 years after t0, the distribution of

attractiveness of jobs, measured by the average discounted life-time value of being there, is

substantially different between perfect foresight and uncertainty.

Moreover, a comparison of Tables 9 and 10 as well as a comparison of the two panels in

Figure 7.2 shows that differences in the lifetime horizon matter. The outcomes of choices

made under uncertainty deviate from their perfect-foresight analogue substantially more for
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young than for old agents. Given that utility and moving costs are the same in the two age

spells, the source of this differential impact is entirely due to the difference in continuation

values. The latter differ by age, because young agents have a longer lifetime horizon than

old ones, whereby the discounted continuation value is larger for the young than for the old.

Therefore, old agents have a ceteris paribus lower incentive to reallocate because of a shorter

lifetime horizon (in which moving costs are less likely balanced by the benefit of escaping

uncertainty). Conversely, for young agents reallocation pays off more easily than for old

ones.

Figure 7.3: Labor reallocation in to, uncertainty versus perfect foresight

Given the initial allocation of labor, the model predicts a fraction of old agents that

within a year do not change their job of 99.31% and among young agents the same statistics

fall to 97.40%. This matches the evidence: in the data, the average fraction of agents that

within a year do not change job is 98.20%, and in the model the weighted average across age

spells is 98.54%. The difference between old and young cohorts in terms of moving despite

identical moving costs is explained by the differential value that agents attach to reallocation

depending on their lifetime horizon.

These insights show that uncertainty alone changes the value of jobs in heterogeneous

and complex ways that ultimately determine a different allocation of who produces what and

where. The long-run allocation of production and consumption emerges through reallocation

of labor starting from the same initial allocation. But reallocation under uncertainty and
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perfect foresight differ due to the aforementioned mechanisms together at work. Importantly,

as the initial state of the economy is not necessarily a steady state for any of the scenarios,

we can compare the differential evolution of the distribution of labor across jobs.

In Figure 7.3, we plot the observed allocation of the labor force across jobs in 2012 (hori-

zontal axis) against the predicted allocation one year after (vertical axis), under uncertainty

(jobs are marked with a cross) and under perfect foresight (jobs are marked with a circle).

If the initial allocation had been a steady state and in the absence of any shocks, jobs would

line up along the 45-degree line. In the chosen setup, we observe transitional dynamics under

the uncertainty as well as the perfect-foresight regime. Furthermore, even after one period,

differences in the optimal labor allocation are visible. Workers move out of jobs with the

higher initial shares under both regimes, but there is more inertia under uncertainty. At the

same time, bigger changes are observed for jobs that are less populated, and these changes

tend to be rather different across regimes.

Figure 7.4 produces the same information but for the longer run, 100 years after t0. At

this point, the equilibrium has lost memory of the initial allocation, and the economy is

characterized by a substantially different allocation of labor across jobs in comparison to

t0. Moreover, the predictions are systematically different between the uncertainty and the

perfect-foresight regimes. Hence, the long-run spatial economy is clearly very different under

a regime of uncertainty from the one under perfect foresight.

Figure 7.4: Labor reallocation in the long run (to+100), uncertainty versus perfect foresight
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8 Conclusions

This paper illustrates a novel methodology that allows us to consider uncertainty about fu-

ture aggregate outcomes, designed in discrete-time and discrete state space to be specifically

suited for quantitative dynamic spatial general-equilibrium models. Thanks to this, we doc-

ument how the distribution of labor across jobs, hence of economic activity across locations

and sectors, differs systematically from what is predicted under a perfect-foresight solution.

We directly speak to the concern that people – both as workers and consumers – tend to

be risk-averse. When prompted to change jobs and locations, they compare future uncertain

returns to their current residence and occupational choices. Thus, in addition to the ”freezing

role” documented in macro literature regarding dynamic choices, uncertainty plays a broader

role in a spatial context. By distorting spatial reallocation compared to perfect foresight,

uncertainty creates comparative advantages or disadvantages across jobs by making the

opportunity value of reallocating to some jobs greater or lower than under perfect foresight.

To understand and quantify how aggregate uncertainty affects the evolution of the spa-

tial distribution of people and economic activity, we quantify a dynamic stochastic general-

equilibrium open-economy model with interregional and intersectoral movements of goods

and people, who also might choose at any period to change occupation, sector or location.

Within each period, the economy works as a state-of-the-art Eaton-Kortum-type produc-

tion equilibrium with input-output linkages as developed by Caliendo et al. (2019). The

specific feature of our framework relies on the intertemporal allocation of labor: Worker-

consumer agents make decisions on jobs and locations under uncertainty about productivity

changes happening worldwide, being aware of their finite lifetime. By considering rational,

aging, forward-looking, and risk-averse households in a dynamic stochastic general equilib-

rium model with realistic spatial linkages due to the moving costs of both goods and people,

our theory provides a rich understanding of the way in which uncertainty impacts reallocation

in the spatial economy.

A large-scale quantification conducted on France demonstrates systematic and significant

changes in the relative attractiveness of jobs solely due to uncertainty. Given the different

allocation of labor across locations and sectors, sizeable welfare losses, but also gains, emerge

under uncertainty compared to perfect foresight.
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Appendices (For Online Publication)

A Dynamic discrete-choice optimal control problem

Rearranging the Bellman equations (1) yields

W bj (Lt, Zt, εh,t) = βEt

[
V yj (Lt+1, st+1)

]
+ νmax

n∈J

{
εnh,t + ε̄bj,nt

}
,

W yj (Lt, Zt, εh,t) = u(cjt) + βEt

[
V̄ yj (Lt+1, st+1)

]
+ νmax

n∈J

{
εnh,t + ε̄yj,nt

}
,

W oj (Lt, Zt, εh,t) = u(cjt) + βEt

[
V̄ oj (Lt+1, st+1)

]
+ νmax

n∈J

{
εnh,t + ε̄oj,nt

}
,

where

ε̄bj,nt ≡ 1

ν

(
βEt

[
V yn (Lt+1, st+1)− V yj (Lt+1, st+1)

]
− ζbj,n

)
, (29)

ε̄yj,nt ≡ 1

ν

(
βEt

[
V̄ yn (Lt+1, st+1)− V̄ yj (Lt+1, st+1)

]
− ζyj,n

)
,

ε̄oj,nt ≡ 1

ν

(
βEt

[
V̄ on (Lt+1, st+1)− V̄ oj (Lt+1, st+1)

]
− ζoj,n

)
.

Suppose that for a given household h the new job which maximizes the expected future
value starting from j is i, so that i = argmaxn∈J

{
εnh,t + ε̄aj,nt

}
and maxn∈J

{
εnh,t + ε̄aj,nt

}
=

εih,t + ε̄aj,it . This is true if and only if εih,t + ε̄aj,it ≥ εmh,t + ε̄aj,mt for every m ̸= i.
Let F (ε) be the c.d.f. of the i.i.d. idiosyncratic shocks εh,t and f(ε) be the corresponding

p.d.f., respectively. Realizations of idiosyncratic values are assumed to be independent across
jobs, and this implies that the event εmh,t ≤ εih,t+ ε̄aj,it − ε̄aj,mt for every m ̸= i occurs with the

joint probability density f(εih,t)
∏

m ̸=i F (ε
i
h,t + ε̄aj,it − ε̄aj,mt ). Taking the expectation of εih,t

over the continuum of households yields
∫∞
−∞(ε+ ε̄aj,it )f(ε)

∏
m̸=i F (ε+ ε̄

aj,i
t − ε̄aj,mt )dε, which

is the contribution of a single job to the value of Eh

[
maxn∈J

{
εnh,t + ε̄aj,nt

}]
. Summing over

all candidate jobs yields the average option value among households of age a for choosing
the next-period job starting from being at job j in the current period t

Ω(ε̄ajt ) ≡
∑
i∈J

∫ ∞

−∞
(ε+ ε̄aj,it )f(ε)

∏
m ̸=i

F (ε+ ε̄aj,it − ε̄aj,mt )dε , a = {b, y, o} .

Therefore, the average option value of moving at age a ∈ {b, y, o} when starting from a job
j is given by

νΩ(ε̄ajt ) ≡
∑
i∈J

∫ ∞

−∞
(νε+ νε̄aj,it )f(ε)

∏
m ̸=i

F (ε+ ε̄aj,it − ε̄aj,mt )dε , (30)
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where

νε̄aj,nt ≡ βEt

[
V̄ an (Lt+1, Zt+1)− V̄ aj (Lt+1, Zt+1)

]
− ζaj,n

are the present-value changes in the continuation value net of the moving costs.
Taking the average of (1) across households yields the expected lifetime value of a rep-

resentative household in each group by age and job of

V aj (Lt, Zt) = ωaj (Lt, Zt) + βEt

[
V̄ aj (Lt+1, Zt+1)

]
+ νΩ(ε̄ajt ), (31)

with the respective specializations for the age groups at the boundaries of the spectrum. Iter-
ating forward, taking the first difference with respect to the value of being in another job, sub-
stituting for νε̄aj,nt+1 +ζ

aj,n
t+1 = βEt+1

[
V̄ an (Lt+2, Zt+2)− V̄ aj (Lt+2, Zt+2)

]
and taking the expec-

tation at time t, hence, substituting for νε̄aj,nt +ζaj,nt = βEt

[
V̄ an (Lt+1, Zt+1)− V̄ aj (Lt+1, Zt+1)

]
,

yields the Euler equation:

νε̄aj,nt + ζaj,nt = (32)

βEt

{[
ωan (Lt+1, Zt+1)− ωaj (Lt+1, Zt+1)

]
+
[
νε̄aj,nt+1 + ζaj,n

]
+
[
νΩ(ε̄ant+1)− νΩ(ε̄ajt+1)

]}
.

Equation (32) is an intertemporal optimality condition which says that for the marginal
mover from job j to n the total cost of moving is equal to the discounted expected benefit
from being in n instead of j in the following period.

A.1 Parametrization of the distribution F (ε)

For the sake of tractability, assume that ε ∼ Gumbel(−γ, 1) where γ ≊ 0.5772 is the Euler-
Mascheroni constant. The first moment is equal to zero and the variance is equal to π2/6.

The c.d.f. and p.d.f. are given by F (ε) = e−e−(ε+γ)
and f(ε) = e−(ε+γ)F (ε). Define the

auxiliary variables δaj,ikt = ε̄aj,it − ε̄aj,kt , λaj,it = ln
(∑

k∈J e
−δaj,ikt

)
. The probability that, when

moving from a certain job j, a given job i is preferred to any other job k is given by∫ ∞

−∞
f(ε)

∏
k ̸=i

F (ε+ δaj,ikt )dε = e−λaj,i
t = maj,i

t , (33)

where we proceeded with a change of variable y = ε−λaj,it , and
∫∞
−∞ e−(y+γ)e−[e

−(y+γ)]dy = 1.

By the law of large numbers, maj,i
t ∈ (0, 1) is the fraction of households in job j who move

to job i at the end of period t. The option value is given by

Ω(ε̄ajt ) =
∑
i∈J

∫ ∞

−∞
(ε+ ε̄aj,it )f(ε)

∏
m ̸=i

F (ε+ δaj,imt )dε

= λaj,jt = − ln
(
maj,j

t

)
, (34)
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where
∫∞
−∞(y + γ)e−(y+γ)e−[e

−(y+γ)]dy = γ and
∫∞
−∞(λaj,jt − γ)e−(y+γ)e−[e

−(y+γ)]dy = λaj,jt −
γ, and we have substituted back for λaj,jt = ln

(∑
k∈J e

−δaj,jkt

)
. Substituting for λaj,it =

ln
(∑

k∈J e
−δaj,ikt

)
and then δaj,ikt = ε̄aj,it − ε̄aj,kt in the expression for the fraction of movers

yields the probability that, when moving from job j, a certain job i is preferred to any other
job k,

maj,i
t =

eε̄
aj,i
t∑

k∈J e
ε̄aj,kt

, (35)

and the option value of moving starting from a certain job j

Ω(ε̄ajt ) = − ln
(
maj,j

t

)
(36)

for a = {b, y, o}. By the law of large numbers, maj,i
t ∈ (0, 1) is the fraction of households in

job j, who move to job i at the end of period t.

A.2 Rewriting the value functions

Substituting for νΩ(ε̄ajt ) = νλaj,jt in the Bellman equation (31), given the definition λaj,jt =

ln
(∑

k∈J e
ε̄aj,kt

)
, the equilibrium expression for ε̄aj,kt in (29) and the equilibrium option value

(36), yields the set of Bellman equations:

V bj (Lt, Zt) = ν ln

(∑
k∈J

e
1
ν (βEt[V yk(Lt+1,st+1)]−ζbj,kt )

)
, (37)

V yj (Lt, Zt) = ωj (Lt, Zt) + ν ln

(∑
k∈J

e
1
ν (βEt[(1−λy)V yk(Lt+1,st+1)+λyV ok(Lt+1,st+1)]−ζyj,kt )

)
,

V oj (Lt, Zt) = ωj (Lt, Zt) + ν ln

(∑
k∈J

e
1
ν (βEt[(1−λo)V ok(Lt+1,st+1)]−ζoj,kt )

)
,

that are summarized in (2).

A.3 Stationarity condition on aggregate population size

The fractions of movers have to sum to unity, thus, after reallocation, the total endowment
of old incumbents is Lo

t =
∑J

j=1

∑J
i=1(m

oi,j
t Loi

t ) and that of the young incumbents is Ly
t =∑J

j=1

∑J
i=1(m

yi,j
t Lyi

t ). They are equal to their respective initial measures under stationarity.
The measure of the newborn is proportional to the young incumbent population λ∗Ly

t , as
Ly
t =

∑J
j=1

∑J
i=1(m

bi,j
t Lyi

t ). The measure of households who die at time t is λoLo
t . It follows

that
∑J

j=1 L
j
t+1 =

∑J
j=1 L

j
t +λ

∗Ly
t −λoLo

t . Labor as a fraction of the population across the J

55



regions, L̄, then sums up to unity, L̄
∑J

j=1 L
j
t = 1. The birth rate ensuring a constant world

population is λ∗ = λoLo
t/(L̄− Lo

t ).
The aggregate measure of young households in period t + 1 is Ly

t+1 = [(1− λy) + λb]Ly
t .

The aggregate measure of old households in period t + 1 is Lo
t+1 = λyLy

t + (1− λo)Lo
t . The

first-order difference equation Lo
t+1 − Lo

t = λyL̄ − (λy + λo)Lo
t holds and shows that the

composition of aggregate population by age group is constant over time if and only if the
initial fraction of old population is equal to Lo

t/L̄ = λy/(λy + λo). This implies λ∗ ≡ λy in
every period t.

B Within-period equilibrium

In this section, we outline the production side of the economy. As in Caliendo and Parro
(2015), firms in each sector and region produce intermediate goods using labor, structures,
and materials. Intermediate goods are purchased by local bundlers in all regions, transform-
ing them into a composite sectoral good that is non-tradable and sold locally to producers
as an input and to consumers as a final good.

B.1 Production

Firms in each sector and country produce varieties of an intermediate good, hiring labor
in different occupations k = 1, ..., K, employing inputs from all sectors s = 1, ..., S, and
using structures. Apart from bundled intermediate goods, firms in region r employ two local
factors, labor and structures. Labor is mobile between regions and sectors, structures are in
fixed supply in each region and sector, and the intermediate goods are purchased by local
bundlers at a price that includes transportation costs. Local goods bundlers do not charge
any extra fees and do not have costs.

Total factor productivity in the production of intermediates is a composite of a sector-
region fundamental total factor productivity Ars

t and a variety-specific efficiency zrs. We
index varieties by their efficiency, as is customary. The output of variety zrs, qrst (zrs), is
determined as

qrst (zrs) = zrsArs
t

(hrst )ξ
rs

(
K∏
k=1

(
lrskt

)ϵsk)1−ξrs
γrs

S∏
s′=1

(
M rs,rs′

t

)γrs,rs′

, (38)

where lrskt and hrst denote labor input of occupation k and structures, respectively, and

M rs,rs′

t denotes the inputs from sector s′ available in region r and used in sector s. The
parameter ξrs ∈ (0, 1) is the share of structures in value added of region-sector rs. The
coefficient ϵsk ∈ (0, 1) measures the share of labor in occupation k and sector s in all labor
costs,

∑K
k=1 ϵsk = 1. The coefficient γrs denotes the share of value added in region-sector rs.

The coefficient γrs,rs
′ ∈ (0, 1) is the cost share of material inputs sourced in sector s′ in all

material input costs in the production in rs. In order to ensure constant returns to scale,
we assume that

∑S
s′=1 γ

rs,rs′ = 1− γrs.
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Let wrsk
t be the wage earned by a worker of occupation k in region-sector rs, call ρrst the

rental price of structures in rs, and let P rs′
t be the price of material inputs in r sourced from

sector s′. A firm producing in region r and sector s employs a factor bundle, whose unit
price is

xrst = Brs

(ρrst )ξ
rs

(
K∏
k=1

(
wrsk

t

)ϵsk)1−ξrs
γrs

S∏
s′=1

(
P rs′

t

)γrs,rs′

, (39)

where Brs = (ξrsγrs)−ξrsγrs∏K
k=1 (ϵsk(1− ξrs)γrs)−ϵsk(1−ξrs)γrs∏S

s′=1

(
γrs,rs

′)−γrs,rs′

is a con-
stant. The total factor productivity of a firm z in region-sector rs is given by the product
zrsArs

t . The marginal (and average) cost to produce variety zrs is given by xrst /[z
rsArs

t ].
Intermediate goods that are produced in a certain region can be traded across regions at a

cost. Shipping goods from the region where they are produced, say r′, to another region where
they are used, say r, involves an iceberg-type trade cost, τ rs,r

′s
t ≥ 1.31 The marginal cost

of variety zr
′s produced in region-sector sector r′s gross of the shipping costs to destination

region r is given by

(
τrs,r

′s
t xr′s

t

Ar′s
t zr′s

)
. The procurement of inputs is perfectly competitive, such

that in every destination region r producers source from the cheapest input supplier in the
economy, gross of trade costs. The price of a specific variety of intermediate good zs of sector
s in region r is given by the lowest price at which the good is available in the region:

prst (zs) = min
r′

{
τ rs,r

′s
t xr

′s
t

zr′sAr′s
t

}
. (40)

The distribution of productivity zrs in a region and sector follows a Fréchet distribution

with cumulative density function F (zrs) = exp
(
− (zrs)−θs

)
. The joint distribution across

regions is given by F (zs) = exp
(
−
∑R

r=1 (z
rs)−θs

)
. The implied distribution of prices in

region r for varieties of intermediate goods used in sector s at time t is given by:32

Grs
t (p) = 1− exp

(
−Φrs

t p
θs
)

, ϕrs,r′s
t =

(
Ar′s

t

τ rs,r
′s

t xr
′s

t

)θs

, Φrs
t =

R∑
r′=1

ϕrs,r′s
t . (41)

31We follow the notation in Caliendo et al. (2019), the superscript of trade costs is labeled as
{destination, source}.

32The distribution of the price at which region r′ serves region r is given by Gr′s,rs(h) = 1− F
(

τrs,r′s
t xr′s

t

Ar′s
t h

)
.

The distribution of the minimum price is Pr
(
min{..., pr′s,rs, ...} ≤ p

)
, thus it is the distribution of the event

that at least a price value out of r′ = 1, ..., R is lower than p. This is the complement at 1 of the probability

that all price values are greater than p, that is Pr
(
min{..., pr′s,rs, ...} ≤ p

)
= 1 −

∏R
r=1

[
1−Gr′s,rs(p)

]
=

1−
∏R

r=1 F
(

τrs,r′s
t xr′s

t

Ar′s
t p

)
.
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We call q̃rst (zs) the quantity of an intermediate good that is a sector-s input in region r
and sourced from the supplier of the cheapest variety at the price prst (zrs) in (40). The
distribution of prices for intermediate goods (41) takes into account all varieties of goods of
that sector s that are available in region r, whether locally produced or traded.

The varieties from sector s around the world are not available directly to producers and
consumers in a specific region r, but they are made available by the local bundlers. These
bundlers aggregate the varieties and then sell them on locally as intermediates to producers
or as final goods to consumers. Use Qrs

t to refer to the composite of sector-s goods available
in region r at t through the bundler. Using a CES technology with elasticity of substitution
ηrs > 1 in the aggregation of varieties, we obtain

Qrs
t =

[∫
(q̃rst (zs))1−1/ηrs dF(zs)

]ηrs/(ηrs−1)

. (42)

The CES structure in the variety aggregation and the Fréchet distribution of productivity
together yield the price index of the composite good of sector s in region r as

P rs
t = Γrs

(
R∑

r′=1

(
xr

′s
t τ rs,r

′s
t

)−θs (
Ar′s

t

)θs)− 1
θs

= Γrs (Φrs
t )−

1
θs , (43)

where Γrs = Γ (1 + (1− ηrs/θs)) and Γ(·) is the Gamma function and we assume 1+θs > ηrs.
As mentioned above, Qrs

t has two uses: it is consumed by households as a final good and it is
employed by producers as an input, both being located in region r. P rs

t is the sector-specific
ideal consumer-price index of households in r, and it is the price of material inputs sourced
from sector s and region r.

Households allocate consumption across sectoral goods according to Cobb-Douglas pref-
erences, such that they spend a fixed share of their income, αs > 0 with

∑S
s=1 αs = 1, on the

consumption of goods from sector s. The aggregate ideal consumer-price index of households
in region r is then

P r
t =

S∏
s=1

(
P rs
t

αs

)αs

. (44)

B.2 Optimal sourcing policy

Call Xrs
t = P rs

t Q
rs
t the sales of sectoral good s in region r. Since the output market is

competitive, sales are equal to costs. Sectoral good producers combine intermediate inputs
(they do not directly employ any labor), thus, total sales are equal to the total value of
purchased intermediate inputs from all sectors and regions.

The probability that producers of intermediates from the source region-sector r′s are
cheapest in the destination region-sector rs yields the cost share of producers in region-
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sector rs pertaining to such intermediates:

πrs,r′s
t =

(
xr

′s
t τ rs,r

′s
t

)−θs (
Ar′s

t

)θs
∑R

r′′=1

(
xr

′′s
t τ rs,r

′′s
t

)−θs (
Ar′′s

t

)θs =
ϕrs,r′s
t

Φrs
t

. (45)

The equilibrium condition (45) illustrates within-sector bilateral trade patterns between
regions. Since only intermediate goods are traded, while composite sectoral goods are not,
this equation fully characterizes the composition and direction of trade flows.

B.3 Output-market clearing

Use Xr′s′
t for the total value of the locally bundled good in region-sector r′s′. Then, the

expenditure of region r′ on intermediates of sector s′ produced in region r is πr′s′,rs′

t Xr′s′
t .

Summing over all destinations,
∑R

r′ π
r′s′,rs′

t Xr′s′
t yields the total value of output (and, hence,

total production costs) of intermediates produced in the sourcing region-sector rs′.
The coefficient γrs

′,rs measures the fraction of total cost in region-sector rs′ accruing
to inputs M rs′,rs

t sourced from the local bundler for sector s in region r; see (38). Thus,

γrs
′,rs
(∑R

r′ π
r′s′,rs′

t Xr′s′
t

)
measures the purchase value of intermediates sourced from the

bundler for sector s in region r and used as an input for the production of intermediates in
region-sector rs′. Summing over all sectors s′ in r that purchase inputs from that bundler s
in r yields the aggregate sales from the bundler s in r as intermediates to local producers,∑S

s′ γ
rs′,rs

(∑R
r′ π

r′s′,rs′

t Xr′s′
t

)
.

The remaining source of sales of the bundler of sector-s goods in regions r is due to
consumption by workers and landlords (who own structures). Let us assume a common
expenditure share of αs′ is spent on consumption of goods offered by the local bundler of
sector-s goods in r. Workers in region-sector rs at time t, Lrs

t ≡
∑K

k L
rsk
t , earn an average

wage rate w̄rs
t =

(∑K
k w

rsk
t Lrsk

t

)
/Lrs

t , and total labor income amounts to w̄rs
t L

rs
t . There is

a fixed endowment Hrs of structures in region-sector rs and a unitary mass of landlords,
who cannot relocate to other regions. They own the local structures and rent them to
local firms earning rents ρrst . Finally, we assume aggregate region-specific trade deficits, Dr

t ,
that are exogenous to the model as in Caliendo and Parro (2015). Region-specific trade
deficits are the sum of sector-specific deficits, Dr

t =
∑S

s=1D
rs
t , which will be endogenously

determined in equilibrium, Drs
t =

∑R
r′=1 π

rs,r′s
t Xrs

t −
∑R

r′=1 π
r′s,rs
t Xr′s

t . Since all sales of the
local bundler, Xrs

t ,are going to either producers as intermediates or to households as final
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goods, the following accounting identity (which also serves as output-market clearing) holds:

Xrs
t =

S∑
s′=1

γrs
′,rs

(
R∑

r′=1

πr′s′,rs′

t Xr′s′

t

)
︸ ︷︷ ︸

purchases as input

+ (46)

αs

(
S∑

s′=1

(
w̄rs′

t Lrs′

t + ρrs
′

t Hrs′
)
+Dr

t

)
︸ ︷︷ ︸

purchases as consumer good

.

B.4 Labor-market clearing

Local labor markets are spatially separated and clustered by type of occupation. Within
each local labor market there is perfect competition. Therefore, total wages are equal to the
component of value added by the corresponding labor types. Consider an arbitrary region r
and sector s′. A fraction ϵs′kγ

rs′ of the total production cost is spent on k-type labor in sector
s′. The total labor cost associated with this share is wrs′k

t Lrs′k
t . Summing over occupations

yields the value added in region-sector rs′ accruing to labor, that is w̄rs′
t Lrs′

t =
∑K

k w
rs′k
t Lrs′k

t

where Lrs′
t =

∑K
k L

rs′k
t . The labor-market clearing condition at the level of region-sector pairs

is given by:

w̄rs′

t Lrs′

t = (1− ξrs
′
)γrs

′

(
R∑
r′

πr′s′,rs′

t Xr′s′

t

)
. (47)

B.5 Market-clearing for structures

The value of structures corresponds to the fraction of value added that is not attributed to
labor:

ρrs
′

t Hrs′ = ξrs
′
γrs

′

(
R∑
r′

πr′s′,rs′

t Xr′s′

t

)
=

ξrs
′

1− ξrs′
w̄rs′

t Lrs′

t . (48)

Thus, the rental price can be expressed in terms of wages and factor endowments.

C Contraction mapping

Let us introduce two definitions and two results.

Definition. A metric space {X, d} is an ordered pair of a non-empty set X and a function
d : X ×X → ℜ+ that satisfies the properties of a distance on X: (i) d(x, x) = 0 for every
x ∈ X; (ii) d(x, y) = d(y, x) for every x, y ∈ X; (iii) for every x, y ∈ X if x ̸= y then
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d(x, y) > 0; (iv) for every x, y, z ∈ X, d(x, z) + d(z, y) ≥ d(x, y).

Definition. Let {X, d} be a metric space. A mapping F : X → X is a contraction if there
exists a constant k ∈ [0, 1) such that d(F (x), F (y)) ≤ kd(x, y) for all x, y ∈ X. That is, F is
Lipschitz continuous for a Lipschitz constant strictly smaller than 1.

Definition. Let {X, d} be a metric space. Let ⟨xk⟩ be a sequence on X, that cosists of
elements x ∈ X indexed by natural numbers such as k. Then ⟨xk⟩ is a Cauchy sequence if
and only if ∀ε > 0 there exists a natural number N such that d(xn, xm) < ε for all natural
numbers n,m ≥ N .

Banach Contraction-mapping Theorem. If F : X → X is a contraction on a complete
metric space {X, d}, then there is exactly one solution x⋆ ∈ X such that x⋆ = F (x⋆). Further-
more, the solution can be obtained as the limit of the sequence ⟨xi⟩ such that xi+1 = F (xi)
for an arbitrary x0 ∈ X for i→ ∞.

The MFG (14)-(16) defines a vector G(X) of Lipschitz continuous and bounded functions
on the nonempty and compact subset Ω of the real space. Call d : Ω × Ω → ℜ+ a dis-
tance function on Ω, such that {Ω, d} is a complete metric space. To prove that G(X) is a
contraction on {Ω, d} we start by examining the behavior of the vector of Bellman equations.

Step 1. The dependence of Bpq
aj (X) on X is mediated by the contingent payoffs. Thus,

we examine the discrete difference in Bpq
aj (X) in comparison to the discrete difference in

φpq
aj,n (X) for n = 1, ..., J with respect to two arbitrary allocations X,Y ∈ Ω

Bpq
aj (Y )−Bpq

aj (X) = ν

(
ln

(
J∑

n=1

eφ
pq
aj,n(Y )

)
− ln

(
J∑

n=1

eφ
pq
aj,n(X)

))
.

Note thatBpq
aj is continuous and differentiable with respect to the contingent payoffs {φpq

aj,n}Jn=1,
and the latter are real-valued and compact-valued functions in X,Y ∈ Ω. Thus, the Mean
Value Theorem implies that on the segment between X ∈ Ω and Y ∈ Ω there exists a point
ρ = (1− ψ)X + ψY for some ψ ∈ (0, 1), such that

∣∣Bpq
aj (Y )−Bpq

aj (X)
∣∣ ≤ ν

∣∣∣∣∣
J∑

n=1

(
eφ

pq
aj,n(ρ)∑J

m=1 e
φpq
aj,m(ρ)

)(
φpq
aj,n (Y )− φpq

aj,n (X)
)∣∣∣∣∣ (49)

≤ ν

J∑
n=1

(
eφ

pq
aj,n(ρ)∑J

m=1 e
φpq
aj,m(ρ)

)∣∣φpq
aj,n (Y )− φpq

aj,n (X)
∣∣

≤ νmax
n

|φpq
aj,n (Y )− φpq

aj,n (X) | , ∀ (a, j, p, q)

where the second line is implied by the triangle inequality and the third line is implied by

61



the weighted average with ratios
(
eφ

pq
aj,n(ρ)/

∑J
m=1 e

φpq
aj,m(ρ)

)
∈ (0, 1) for every n = 1, ..., J .

Step 2. To examine the discrete difference of payoffs (13), indicate the partitions in X of
frequency distribution and values, respectively, as Lpq ≡ Xpq(L) and Vp′q′

an ≡ Xp′q′
an (V), such

that

φpq
aj,n (X) =

1

ν

P∑
p′=1

bp′(X
pq(L))

Q∑
q′=1

πqq′
(
β
[
(1− λa)Xp′q′

an (V) + λaXp′q′

(a+1)n(V)
]
− ζaj,n

)

=
1

ν

Q∑
q′=1

πqq′
a+1∑
a′=1

ϕaa′

P∑
p′=1

bp′(X
pq(L))

(
βXp′q′

a′n (V)− ζaj,n
)
,

where in the second line we have used ϕaa′ = {1 − λa, λa} respectively for a′ = {a, a + 1}.
Thus, the discrete difference in payoffs with respect to two points X,Y ∈ Ω is given by:

φpq
aj,n (X)− φpq

aj,n (Y )

=
β

ν

Q∑
q′=1

πqq′
a+1∑
a′=a

ϕaa′

P∑
p′=1

(
bp′(X

pq(L))Xp′q′

a′n (V)− bp′(Y
pq(L))Y p′q′

a′n (V)
)

=
β

ν

Q∑
q′=1

πqq′
a+1∑
a′=a

ϕaa′

 P∑
p′x=1

bp′x(X
pq(L))Xp′xq

′

a′n (V)−
P∑

p′y=1

bp′y(Y
pq(L))Y p′yq

′

a′n (V)

 ,

=
β

ν

 Q∑
q′=1

a+1∑
a′=a

P∑
p′x=1

πqq′ϕaa′bp′x(X
pq(L))Xp′xq

′

a′n (V)−
Q∑

q′=1

a+1∑
a′=a

P∑
p′y=1

πqq′ϕaa′bp′y(Y
pq(L))Y p′yq

′

a′n (V)

 ,

where in the second line we emphasize that the summation on p′ = 1, ..., P makes use of
barycentric weights to compute the difference between averages of Xp′q′

a′n (V) and Y p′q′

a′n (V)
over p′ = 1, ..., P for a given pair (q′, a′). Hence, as shown in the last line, the difference in

payoffs is equal to the difference between averages of Xp′q′

a′n (V) over (q′, a′, p′x) and Y p′q′

a′n (V)
over (q′, a′, p′y). Taking the Euclidean distance, shows that the distance between the payoffs
computed on points X and Y , contingent on a given state (a, j, p, q) and for a given action
n̄ = 1, ..., J , is equal to the distance between the corresponding means over (q′, a′, p′) and

the latter is bounded above by the maximum distance between any two elements X
p′xq

′

a′n (V)
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and Y
p′yq

′

a′n (V)∣∣φpq
aj,n (X)− φpq

aj,n (Y )
∣∣ (50)

=
β

ν

∣∣∣∣∣∣
Q∑

q′=1

a+1∑
a′=a

P∑
p′x=1

πqq′ϕaa′bp′x(X
pq(L))Xp′xq

′

a′n (V)−
Q∑

q′=1

a+1∑
a′=a

P∑
p′y=1

πqq′ϕaa′bp′y(Y
pq(L))Y p′yq

′

a′n (V)

∣∣∣∣∣∣
≤ β

ν
max

(q′,a′,p′x,p
′
y)

∣∣∣Xp′xq
′

a′n (V)− Y
p′yq

′

a′n (V)
∣∣∣ , ∀ (a, j, p, q, n).

Step 3. Combining (49) and (50) shows that for every grid-point (pq) and individual state
(aj) the Euclidean distance between each entry of the vector image of the system of Bellman
equations is bounded above by:

∣∣Bpq
aj (Y )−Bpq

aj (X)
∣∣ ≤ βmax

n

{
max

(q′,a′,p′x,p
′
y)

∣∣∣Xp′xq
′

a′n (V)− Y
p′yq

′

a′n (V)
∣∣∣} , ∀ (a, j, p, q).

Sort B(X) = {Bpq
aj (X),∀(a, j, p, q)}, B(Y ) = {Bpq

aj (Y ),∀(a, j, p, q)}, X(V) and Y (V) as
matrices of dimension [J × 2 · Q · P ], with jobs on the rows and occurrences of the triplet

(q, a, p) on the columns. Define the function dB : ℜ[J×2·Q·P ]
+ ×ℜ[J×2·Q·P ]

+ → ℜ+

dB(Y,X) = max
r

max
cx,cy

|Yrcy −Xrcx| , ∀X, Y :
X = {Xrc ∈ ℜ+ : r = 1, ..., J and c = 1, ..., 2 ·Q · P}
Y = {Yrc ∈ ℜ+ : r = 1, ..., J and c = 1, ..., 2 ·Q · P}

that satisfies the properties of a distance: dB(Y,X) ≥ 0, dB(Y,X) = 0 ⇐⇒ X = Y ,
dB(Y,X) = dB(X, Y ) and dB(Y, Z) + dB(Z,X) ≤ d(Y,X). Furthermore, dB(kY, kX) =

|k|dB(Y,X) for every arbitrary k ∈ ℜ, thus, dB is a norm on the vector space ℜ[J×2·Q·P ]
+ . The

system of (49) and (50) for all occurrences (a, j, p, q) implies

dB (B(Y ),B(X)) ≤ βdB (Y (V),X(V)) , ∀ X(V),Y (V) ∈ ℜ[J×2·Q·P ]
+ . (51)

Therefore, for every β ∈ [0, 1) the system of Bellman equations is a contraction on the com-

plete metric space {ℜ[J×2·Q·P ]
+ , dB}.

Step 4. Sort K(X) = {Kpq
aj (X),∀(a, j, p, q)} and X(L) as [J × 2 · Q · P ] matrices, with

jobs on the rows and occurrences of the triplet (q, a, p) on the columns. The column stacks
G(X) = [B(X);K(X)] and X = [X(V);X(L)] are matrices of dimension [2 ·J × 2 ·Q ·P ],
and the space Ω can be defined accordingly as a compact subset in ℜ[2·J×2·Q·P ]

+ . This allows
the iterative scheme for the MFG X i+1 = G(X i) to be written as the vector equation:[

X i+1(V)
X i+1(L)

]
=

[
B(X i)
K(X i)

]
=

[
B
(
[X i(V);X i(L)]

)
K
(
[X i(V);X i(L)]

) ] , given X0 ∈ Ω. (52)
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As it can be seen from (50), at each iteration the image of the system of Bellman equa-
tions, i.e. X i+1(V), depends on X i(L) through the barycentric weights only, which im-
plies that the mapping B(X i) contracts with respect to dB, as shown in (51), for every
vector X i(L). Thus, the iteration on (52) generates a sequence of values of the DOCP
(X1(V),X2(V), ...,X i(V),X i+1(V), ...) that is Cauchy with respect to dB, hence, its limit

is unique in the complete metric space {ℜ[J×2·Q·P ]
+ , dB}.

Step 5. To conclude the proof, we must extend the previous result on Ω ⊂ ℜ[2·J×2·Q·P ]
+ with

respect to a norm d on Ω. This will show that the mapping X i+1 = G(X i) is a contraction
on a complete metric space {Ω, d}. To this purpose, define a function d : Ω × Ω → ℜ+ as
given by the subdistance on the subspace of the Bellman equations:

d(Y ,X) = dB(Y (V),X(V)) , ∀ X,Y ∈ Ω ⊂ ℜ[2·J×2·Q·P ].

The following properties hold: d(Y ,X) ≥ 0, d(Y ,X) = d(X,Y ), d(Y ,Z) + d(Z,X) ≤
d(Y ,X) and d(kY , kX) = |k|d(Y ,X) for every scalar k hold. The last requirement for d
being a valid norm on Ω is that d(Y ,X) = 0 ⇐⇒ Y = X. It is obvious to conclude
that Y = X =⇒ d(Y ,X) = 0, thus, the other direction of causality is the one that
should be proved. Every Y (V) ̸= X(V) =⇒ d(Y ,X) > 0 and we know already that
dB(Y (V),X(V)) = 0 ⇐⇒ Y (V) = X(V). Therefore, we look for the only possible
contradiction and assume

Hp : ∃ X,Y ∈ Ω : d(Y ,X) = 0 and Y (L) ̸= X(L).

From (50), taking the maximum over n = 1, ..., J yields for every X,Y ∈ Ω

max
n

∣∣φpq
aj,n (X)− φpq

aj,n (Y )
∣∣ ≤ β

ν
max

n

{
max

(q′,a′,p′x,p
′
y)

∣∣∣Xp′xq
′

a′n (V)− Y
p′yq

′

a′n (V)
∣∣∣} ∀ (a, j, p, q)

≤ β

ν
dB (X(V),Y (V)) ∀ (a, j, p, q).

Therefore, φpq
aj,n (Y ) = φpq

aj,n (X) for every (a, j, p, q, n) if and only if X(V) = Y (V). Fur-
thermore, from (15), images of the system of Kolmogorov equations are continuous and
bounded functions of the payoffs, therefore, φpq

aj,n (Y ) = φpq
aj,n (X) for every (a, j, p, q, n)

also implies B(Y ) = B(X) and K(Y ) = K(X). Let X(V) = Y (V), call xp
′q

an ≡∑Q
q′=1 πqq′

∑a+1
a′=a ϕaa′X

p′q′

a′n (V) and compute the difference between payoffs:

φpq
aj,n (X)− φpq

aj,n (Y ) =
P∑

p′=1

xp
′q

an bp′(X
pq
:: (L))−

P∑
p′=1

xp
′q

an bp′(Y
pq
:: (L)) ∀ (a, p, q, n).

Thus, interpreting barycentric weights as a histogram on the support {xpqan ∀(a, p, q, n)},
the equivalence in payoffs φpq

aj,n (X) = φpq
aj,n (Y ) holds if and only if the grid of barycentric

weights yields the same average under X and Y , for every (a, p, q, n).
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However, barycentric weights do not vary by age and action (a, n), thus, the same linear
relationship should be satisfied by several age-and-action-specific occurrences such that, for
every (p, q), each of the two nonzero barycentric weights bkxi (X

pq(L)), bkyi (Y
pq(L)) for i = 1, 2

should be the solution to an overdetermined linear system of 2 · J equations in 2 unknowns,
where J > 1. Given a large set of age and action pairs, admissible solutions such that
barycentric weights are equal and X(L) ̸= Y (L) do not exist.33 Therefore, given X(V) =
Y (V), φpq

aj,n (X) = φpq
aj,n (Y )∀ (a, p, q, n) ⇐⇒ X(L) = Y (L). Combining the previous

results yields

d(X,Y ) = 0 ⇐⇒ dB(Y (V),X(V)) = 0

⇐⇒ Y (V) = X(V)
⇐⇒ φpq

aj,n (Y ) = φpq
aj,n (X) ∀ (a, j, p, q, n)

=⇒ B(Y ) = B(X) and K(Y ) = K(X) ,∀ X,Y ∈ Ω

=⇒ Y (L) = X(L) ∀ X,Y ∈ Ω.

This contradicts Hp. Therefore, d is a norm on Ω and

d (G(Y ),G(X)) ≤ βd (Y ,X)

shows that for every β ∈ [0, 1) the MFG G is a contraction on the complete metric space
{Ω, d}. Banach Contraction-mapping Theorem implies that the unique solution to (52) can
be obtained iterating on X i+1 = G(X i) for an arbitrary X0 ∈ Ω. ■

D Intuition about the role of uncertainty

In this section we provide a more formal derivation of the implications of option-value ap-
proach to choices under uncertainty, discussed in Section 4.

1. If agents are risk-averse, aggregate uncertainty depresses the incentive to relocate rela-
tive to perfect foresight. To see this, consider an exogenous, ceteris paribus increase in the
real wage paid in job n. Under risk aversion, the function V an is strictly concave with re-
spect to updates in the own real wage, and Jensen’s inequality implies Et [V

an(Lt+1, Zt+1)] ≤
V an (Lt+1,Et [Zt+1]) and Et

[
V (a+1)n(Lt+1, Zt+1)

]
≤ V (a+1)n (Lt+1,Et [Zt+1]), which holds with

equality only under perfect foresight.

2. Due to aggregate uncertainty, more households rationally spend a greater portion of their
life in relatively bad jobs. To see this, consider two jobs {n, j} with the same fundamentals

33A technical conditions on the grid of distributions (l1, l2, ..., lP ) and barycentric weights shall be imposed,
namely: Given xp′q

an ∈ ℜ+ : p′ = 1, ..., P for all (a, q, n), and two states X,Y ∈ Ω, if X(L) ̸= Y (L) then there

exists at least one occurrence (a, p, q, n) such that
∑P

p′=1 x
p′q
an bp′(Xpq

:: (L)) ̸=
∑P

p′=1 x
p′q
an bp′(Y pq

:: (L)). However,
this is always the case if the vector of barycentric weights for X ∈ Ω, i.e. {bp′(Y pq(L)) : p′ = 1, ..., P} cannot
be written as a linear combination of the vector of barycentric weights for Y ∈ Ω, i.e. {bp′(Xpq(L)) : p′ =
1, ..., P}. Unless the grid of distributions (l1, l2, ..., lP ) and the distance δ used to compute barycentric
weights are trivial, this is always true in large scale problems.
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and identical realization of an aggregate stochastic shock at time t, such that V an(Lt, Zt)−
V aj(Lt, Zt) = 0 and Et [V

an(Lt+1, Zt+1)− V aj(Lt+1, Zt+1)] = 0. Recall that moving decisions
are made at time t, by looking at the foreseen differences in next-period values.

Consider a positive shock to the value of job n with some persistent behavior. The con-
cavity of the value function with respect to updates in the own real wage implies that foreseen
positive differences under perfect foresight are smaller than under uncertainty with rational
but risk-averse agents, V an(Lt+1, Zt+1)−V aj(Lt+1, Zt+1) > Et [V

an(Lt+1, Zt+1)− V aj(Lt+1, Zt+1)] >
0. And the reverse conclusion holds for negative shocks, V an(Lt+1, Zt+1)−V aj(Lt+1, Zt+1) <
Et [V

an(Lt+1, Zt+1)− V aj(Lt+1, Zt+1)] < 0.

3. Aging reduces the option value of relocation. Consider the value of the DOCP for an agent
who moves from job j to job n within the two age spells, young and old:

V yj(Lt, Zt) = ωyj(Lt, Zt)− ζyj,n + β {(1− λy)Et [V
yn (Lt+1, Zt+1)] + λyEt [V

on (Lt+1, Zt+1)]} ,
V oj(Lt, Zt) = ωoj(Lt, Zt)− ζoj,n + β {(1− λo)Et [V

on (Lt+1, Zt+1)]} .

Given continuous and positive functions V aj ≥ 0 for a = {y, o} and ωyj = ωoj ≥ 0, the sorting
in moving cost ζoj,n ≥ ζyj,n ≥ 0 implies that V yj(Lt, Zt)−V oj(Lt, Zt) ≥ V yj(Lt, Zt)+ ζ

yj,n−
V oj(Lt, Zt)−ζoj,n. Without loss of generality, we assume ζyj,n = ζoj,n. Thus, the gap between
total value and continuation value does not depend on age, and

V yj(Lt, Zt)− V oj(Lt, Zt) = βEt [(1− λy)V yn (Lt+1, Zt+1)− (1− λo − λy)V on (Lt+1, Zt+1)] .

Then, the ranking of total value and continuation value between the young and the old must
be the same. Clearly, 1− λo ≤ λy is a sufficient condition for both total value V yj(Lt, Zt) >
V oj(Lt, Zt) and continuation value (1 − λy)Et [V

yn (Lt+1, Zt+1)] + λyEt [V
on (Lt+1, Zt+1)] >

(1− λo)Et [V
on (Lt+1, Zt+1)] of the young being larger.

Let this sufficient condition be violated, i.e., λy < 1−λo, and assume that the continuation
value (1− λy)Et [V

yn (Lt+1, Zt+1)] + λyEt [V
on (Lt+1, Zt+1)] ≤ (1− λo)Et [V

on (Lt+1, Zt+1)] is
larger for the old. Since 1−λy > λo, then, for Et [V

oj (Lt+1, Zt+1)] > Et [V
yj (Lt+1, Zt+1)] > 0,

a lower bound to the continuation value of the young is given by (1−λy)Et [V
yn (Lt+1, Zt+1)]+

λyEt [V
on (Lt+1, Zt+1)] > λoEt [V

yn (Lt+1, Zt+1)]+(1−λo)Et [V
on (Lt+1, Zt+1)] and, therefore,

the continuation value of the old can be larger only, if the expected next-period value for
the young is negative

λoEt [V
yn (Lt+1, Zt+1)] + (1− λo)Et [V

on (Lt+1, Zt+1)] ≤ (1− λo)Et [V
on (Lt+1, Zt+1)]

=⇒ Et [V
yn (Lt+1, Zt+1)] < 0, ̸ ∃

which is a contradiction. Hence, for the same job and the same moving cost between age
cohorts, both the total value and the continuation value for the young are larger than for
the old. The same holds true, if ζoj,n ≥ ζyj,n.
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E Quantification of the model

To determine the key parameters specific to the model, we need two types of ingredients.
First, we need the parameters and realizations of the stochastic state determining the within-
period equilibrium which will determine the counterfactual distribution of wages paid and
other (input and output) prices given the distribution of individuals across jobs. The re-
spective parameters are the production function elasticities and TFP values, trade costs,
elasticities of substitution and final consumption shares. Second, we need the parameters
determining the intertemporal equilibrium which will be determine the counterfactual dis-
tribution of value and individuals across jobs in each period of the dynamic problem. The
respective parameters pertain to mobility costs, discounting, and the dispersion of tastes for
jobs. In general, we use 2012 as a benchmark for the within-period equilibrium. In order to
estimate characteristics of the TFP process, we employ panel data between the years 2003
and 2014. For estimating mobility costs from the mobility of individuals between pairs of
jobs we employ data on individual workers in France and use the observed changes from jobs
in 2009 to jobs in 2010 and from 2012 to 2013, respectively.

E.1 Intratemporal equilibrium parameters

The data sets employed to obtain the intratemporal parameters are the annual structural
statistics of companies for France (the FICUS-FARE dataset published by INSEE), the
French administrative employer-employee dataset Declaration Annuelle des Donnees Sociales
published by INSEE, WIOD data on input-output tables as well as their data on socioeco-
nomic accounts and Eurostat’s European Road Freight Transport Survey. Apart from these
data, we need data on bilateral sales (trade flows) between all pairs of NUTS2 regions in
France and the Rest of the World (ROW) (R = 22 + 1) for every sector (WIOD sector
S = 49).

Output data at this level are available from the FICUS-FARE dataset and from WIOD
for the ROW. We measure trade flows of manufactured goods between French regions using
the European Road Freight Transport Survey after mapping their product categories into
WIOD’s. This permits distributing output of a region and sector across other regions based
on freight data. We can directly observe imports and exports with the ROW for each
region and sector. To approximate services trade, we calculate distance elasticities from
sector-level country-by-country WIOD data and distribute services based on the distances
between French regions for each services sector, accordingly. From French administrative
matched employer-employee data (DADS) and balance-sheet data (Ficus-Fare) we compute
the fraction of the employment of labor in hours by region, sector, and occupation in the
baseline year, that is Lrsk

2012. Using two sources of data in Eurostat, Land use overview by
NUTS 2 regions and Annual national accounts, Breakdowns of non-financial assets by type,
industry and sector, we measure the land use in squared kilometers by sector and regions
in France. Moreover, we observe total fixed assets (in gross terms, according to ESA 2010)
by sector in the country. We use the share of assets by sector times sectoral and regional
land use in the year 2012 as our measure for the units of structures used by region and
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sector, Hrs. In Panel (b) of Figure 6.1 we report the distribution of structures across French
regions averaged over sectors using sector-level weights based on the employment share of
each sector.

To construct the ROW analogue for all variables, we use WIOD data and scale them such
that the values for France match the corresponding aggregate levels in the DADS data. This
makes the value that we observe in WIOD for ROW comparable in magnitude to the data
for France. For structures, where ROW data is missing, we use the relationship between
production factors in France to predict them for the ROW.

Table 11: Summary statistics for ROW versus France

mean std.dev. p10 p50 p90

Revenue ROW / Revenue France 22.550 2.625 19.166 22.378 26.431
Labor cost ROW / Labor cost France 63.882 17.339 46.486 58.489 92.023
Value of intermed. ROW / Value of intermed. France 22.940 3.033 19.085 22.763 26.711

Source: Own computations based on WIOD, DADS, and Eurostat.

Table 11 reports descriptive statistics of key economic aggregates for the ROW relative
to France on average across years and sectors. Revenues in the ROW are about 22.5 times
the ones in France; the labor force is about 64 times the one in France, and expenditures in
intermediates are about 23 times the ones in France.

E.2 Trade elasticities θs.

The calibration requires knowledge of sector-specific trade elasticities θs which we take from
Caliendo and Parro (2015).

E.3 Measuring trade costs τ rs,r′s.

Trade costs are measured based on data for 2012. We calculate trade costs by the so-called
Head-Ries index (Head and Ries, 2001) using interregional sales and purchases between re-
gions r and r′ in sector s, Xrs,r′s and Xr′s,rs both from year 2012 and based on the afore-
mentioned freight data, each normalized by the intraregional absorption, Xrs,rs and Xr′s,′s:

τ rs,r
′s =

(
Xrs,rsXr′s,r′s

Xrs,r′sXr′s,rs

)1/(2θs)

. (53)

We present the such obtained trade costs in Table 4, note that we ensure that τ rs,r
′s ≥ 1

throughout. We will assume prohibitive trade costs equal to τ = 1, 000 for all cases where
no trade costs are observed.
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E.4 Measuring cost-share parameters ϵsk, ξrs, γrs, and γrs,rs
′
.

As the cost-share parameters will be treated as time-invariant, we will skip the time index
in this section and only note that all data used to measure these parameters pertain to the
year 2012.

We observe the total wages paid to workers from the employer-employee data set. We
aggregate these data to obtain the total wages paid to persons of skill group k employed
in sector s of region r, wrskLrsk, and calculate the share paid to each skill group as ϵsk =
(
∑R

r=1w
rskLrsk)/(

∑R
r=1

∑K
k=1w

rskLrsk). Since we do not observe wages by skill groups for
the ROW, we take the average of the French skill shares over regions in France for each
sector of ROW. From the production data we use sector-region-level aggregates of costs
paid for intermediates and raw materials (which we combine to intermediates) and salaries,
respectively. Total costs that are devoted to salaries divided by total revenues will be used
as a measure of γrs (1− ξrs), and, the costs of intermediates in region r and sector s, relative
to revenues correspond to (1− γrs). The production function elasticity of structures can be
calculated assuming that all production function elasticities sum up to unity, γrsξrs = 1 −
γrs (1− ξrs)−(1− γrs). For the ROW, we take the sector-specific average of γrsξrs across all
regions as an estimate for the ROW. Moreover, we calculate (1− γrs) and γrs (1− ξrs) using
the share of intermediate input purchases and labor in the total costs of production in sector s
in all countries but France from WIOD data and adjust the shares such that γROW,sξROW,s+(
1− γROW,s

)
+ γROW,s

(
1− ξROW,s

)
= 1. Moreover, WIOD provides information on the

fraction of spending of sector s on inputs from sector s′ in total purchases of intermediates
for each country. We use the data for France and parameterize γrs,rs

′
= γs,s

′
for its regions.

For the ROW, we relate the ROW purchases of s from s′ to calibrate γrs,rs
′
in the same way.

E.5 Measuring final consumption share αs.

We use WIOD data on final consumption for France to obtain the shares spent on each sector,
αs, respectively. Production function elasticities and consumption shares are summarized in
Table 2.

E.6 Estimation of TFP levels

Since our model suggest that the process of TFP is stochastic, we aim at obtaining a time
series of the stochastic component of TFP, Ars

t that allows us to obtain estimates of the
long-run mean of region-sector specific productivity shocks as well as measures of uncer-
tainty about its stochastic component. In order to obtain this time series, we use panel
data for 12 years between 2003 and 2014. Once we have obtained the time series of the
stochastic component and its region-sector-specific level, we specify the stochastic process
of productivity shocks across French regions and sectors as an AR(1) process which exhibits
an rs-specific level in the short run and calculate the long-run mean implied by the specified
process for each region and sector. Finally, we measure uncertainty as the variation of the
TFP residuals around the region-sector-time-specific prediction from the AR(1) process.
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We proceed in three steps. First, we isolate a time series of region-sector-specific pro-
ductivity. Second, we isolate the region-sector-specific time invariant level differences and
the stochastic component of TFP. Finally, we estimate the stochastic AR(1) process un-
derlying the latter time series. In measuring region-sector-specific productivity we follow
Caliendo and Parro (2015) and Caliendo et al. (2018), whose production equilibrium is fully
consistent with the one that we consider in this paper.34 However, relative to Caliendo et al.
(2018) we need to solve the model in levels rather than in changes, as the so-called exact-
hat-algebra is not available for it. For this reason, we need to make use of the region-sector
price index P rs

t .
In a first step, we obtain the aggregate sector-region-level production function by relating

aggregate output in a region and sector to aggregate inputs used in that sector. Aggregating
over skill groups, let lrst (z), denote the demand for labor by a producer operating in region
r and sector s at time t with an idiosyncratic efficiency of z. Let M rs

t (z) and Hrs
t (z) denote

the same producer’s demand of intermediates and structures. With prst (z)qrst (z) denoting the
sales value of that producer, and with P rs

t denoting the price of the intermediates bundle in
r, s, wrs wages in r, s and, ρrst the price of structures in r, s, we obtain:

hrst (z) = γrsξrs
prst (z)qrst (z)

ρrst
lrst (z) = γrs (1− ξrs)

prst (z)qrst (z)

wrs
t

M rs
t (z) = (1− γrs)

prst (z)qrst (z)

P rs
t

.

Aggregating over varieties yields

Hrs
t = γrsξrs

Y rs
t

ρrst
Lrs
t = γrs (1− ξrs)

Y rs
t

wrs
t

M rs
t = (1− γrs)

Y rs
t

P rs
t

.

Thus, optimal factor demands can be expressed in terms of aggregate inputs, namely struc-
tures, labor and intermediate inputs in rs and t, Hrs

t , Lrs
t and M rs

t , and aggregate output
produced in rs and t, Y rs

t , respectively:

hrst (z) =
prst (z)qrst (z)

Y rs
t

Hrs
t lrst (z) =

prst (z)qrst (z)

Y rs
t

Lrs
t M rs

t (z) =
prst (z)qrst (z)

Y rs
t

M rs
t .

Substituting in the production function of in (38) yields gross output in region r sector s,
Y rs
t , which scaled by the region and sector specific price index yields real gross output:

Y rs
t

P rs
t

=
xrst
P rs
t

[
(Hrs

t )γ
rsξrs (Lrs

t )γ
rs(1−ξrs) (M rs

t )1−γrs
]
. (54)

In the latter, we substituted for the competitive price prst (z) =
xrs
t

z(Ars
t )

. Equation (25) shows

that the model implies a region-and-sector specific production function with observed TFP
given by the input-bundle price relative to the output price, xrst /P

rs
t . By expressing the

sectoral price index in (43) using the domestic expenditure share in (45), πrs,rs
t , the observed

34 In particular, we define trade flows and value added shares exactly as in Sections 3.3 and 4 in
Caliendo and Parro (2015), and we follow Section 4 in Caliendo et al. (2018) in measuring TFP.
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TFP of region r and sector s, Ars
t , is determined by:

xrst
P rs
t

=
Ars

t

Γrs (πrs,rs
t )

1
θs
. (55)

Hence, in order to obtain an estimate of Ars
t , we will first estimate observed sector-region-

specific TFP from a region-sector-specific aggregate production function as a residual and
then rescale it using data on internal trade shares and elasticities. Specifically, we estimate(

xrs
t

P rs
t

)
using equation (25) and data on the value of gross output in region r and sector s, price

indices of the composite good in region r and sector s, as well as structures, employment,
material inputs and the respective output elasticities in each region and sector.

We observe data on gross output, structures, hours worked and expenditures on inter-
mediates directly, but we need additional information on prices of output as well as the
aggregate price of the intermediate good. Moreover, we will rely on the production function
elasticities discussed above. In order to obtain an estimate of the output price index, we

use data on trade shares across region-sectors and can recover an estimate of
(

P rs
t

Γrs

)
up to a

constant across regions within a sector. The share of total expenditure of region r and sector
s on intermediates sourced from region r′ and sector s, that is Xrs,r′s/Xrs

t , corresponds to

the share πrs,r′s
t defined in equation (45). Substituting for the equilibrium sectoral price

index in (43) yields the fraction of spending of {rs} on goods from {r′s}:

Xrs,r′s
t =

ϕrs,r′s
t

(P rs
t /Γ

rs)−θs
Xrs

t . (56)

Given (trade or) sales flows and θs, we use this to express the normalized import share
as defined in Eaton and Kortum (2002):35

Xrs,r′s
t /Xrs

t

Xr′s,r′s
t /Xr′s

t

1(
τ rs,r

′s
t

)−θs
= X̃rs,r′s

t =

(
Γrs

Γr′s

P r′s
t

P rs
t

)−θs

(57)

where we have substituted for ϕrs,r′s
t =

(
Ar′s

t

τrs,r
′s

t xr′s
t

)θs

.

Using data on transport costs from above, we can construct the left-hand side, introduce a
mean-zero stochastic term ϵrs,r

′s
t , and postulate a log-linear stochastic gravity-type regression

with fixed effects only of the form:

ln X̃rs,r′s
t = αrs

t + βr′s
t + ϵrs,r

′s
t . (58)

Using data on θs, we can recover estimates of
(

P rs
t

Γrs

)
= exp

(
α̂rs
t

)−1/θs

. Note that this al-

35See equation (12) in Eaton and Kortum (2002).
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lows us to obtain relative intermediate price indices across regions within a sector. This is,
however, insufficient for our purposes as we have to make these price indices comparable
across sectors. To establish a common anchor for the sector-level price indices across re-
gions, we use data on relative intermediate input price differences across sectors from the
GGDC Productivity Level Database and scale all derived estimates in a given sector using
these data. Finally, we use the sector-region-specific price indices36 to aggregate them up
to the sector-country-specific price of the intermediate input bundle which allows us to cal-
culate the intermediate input quantity, M rs

t , from expenditure on intermediate inputs using∏S
s′=1

(
P rs′
t

γrs′,rs

)γrs′,rs

. With all data at hand, we calculate the region-sector-specific ln(Ars
t ):

ln(Ars
t ) = ln(Y rs

t )− ln

(
P rs
t

Γrs

)
− γrsξrs ln(Hrs

t )− γrs (1− ξrs) ln(Lrs
t )− (1− γrs) ln(M rs

t )

(59)

+ 1/θs ln(πrs,rs
t ),

where γrs is the labor-cost share, θs the trade elasticity, πrs,rs
t is the local absorption share

obtained from the constructed trade flow matrix, Y rs
t are aggregated gross revenues in r, s,

Lrs
t are total hours worked in r, s, and M rs is obtained from total input expenditures in r, s

divided by the intermediate input price as defined above.
Panel (a) of Figure 6.2 reports the distribution of measured TFP, Ars

t , across French
regions aggregated over sectors using employment-based weights. According to the figure,
the south of the country (where manufacturing activities are predominant) and Île de France,
the region of Paris (the center of financial services), emerge as the areas with the highest
productivity levels.

E.7 Estimation of the stochastic process for TFP

While our model is silent on the origins of TFP, we model its level as a function of time-
invariant components that vary at the sector and region level, yearly variations that are
common across France, and a component that is a function of labor employed in a region
sector. The latter takes into account considerations that TFP might not be purely deter-
ministic, but is to a certain extent an outcome of the pre-determined agglomeration of labor
Lrs
t in a region-sector.37 For our analysis of the role of uncertainty, we are particularly in-

terested in the region-sector-time stochastic component, ηrst of measured TFP, that is not
captured by the above elements of the TFP process. To isolate the stochastic part ηrst but
at the same time keep the level of TFP varying across sector, we exclude any variation in
TFP that is common across France and time varying (captured by time fixed-effects) and

36Note that we calculate Γrs = Γ (1 + (1− ηrs/θs)) from elasticities to isolate the level of the price index.
37Note that this is in line with the model where we consider a deterministic evolution of the distribution of the
labor force, such that labor allocated to a certain region and sector at time t is the deterministic consequence
of the distribution of labor and TFP realizations at time t − 1. Therefore, through the lens of the model,
the labor allocation Lrs

t is exogenous to the actual realization of technological shocks at time t.
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the pre-determined agglomeration of labor:38

lnArs
t = κ lnLrs

t + δr + δs + δt + ηrst , (60)

where κ is the elasticity of measured TFP to labor allocation, δr, δs, and δt are, respectively,
region-, sector-, and year-fixed effects. The fraction of total variation in measured TFP
explained by these deterministic components is 78.6%. The elasticity of labor allocation is
small but statistically significant κ̂ = 0.028, which explains somewhat less than 1% of the
total variation in log TFP. We define the stochastic component of TFP as the region- and
sector-specific components of measured TFP plus the residual in (26):

ln arst = δr + δs + ηrst . (61)

Panel (b) in Figure 6.2 reports the distribution of the stochastic component of TFP, arst ,
across French regions aggregating using sector-level employment shares as weights. Dif-
ferences with respect to the overall measured TFP in panel (a) of the figure are modest in
magnitude. Generally, the pattern that emerges is a shorter range of variation of the stochas-
tic component. Thus, considering the stochastic component of TFP is a more conservative
approach for our purposes. In fact, it reduces the spectrum of realizations of the aggregate
stochastic shock that agents are uncertain about, thus, shrinking the room for uncertainty
to play a role.

Using the panel data on ln arst for the years 2003-2014, we postulate and estimate an
autoregressive process of the form that informs the uncertainty around realized TFP levels
that we are going to feed into the quantification exercise:

ln arst = µrs + ρ ln arst−1 + ιrsεrst , (62)

where εrst ∼ i.i.d.(0, 1), ρ is a common autoregressive coefficient, the region and sector specific
parameter µrs scales the mean of the process, and ιrs parametrizes the region-sector specific
volatility that tunes the degree of uncertainty in region r and sector s. As long as |ρ̂| < 1,
the process is stationary. Then, ln ars ≡ µ̂rs/(1− ρ̂) and σrs ≡ ι̂rs/

√
1− ρ̂2 are, respectively,

the asymptotic long-run mean and standard deviation of the stochastic component of TFP
in region r sector s.
Table 12 reports the moments of the process for ln(arst ), where the estimate of the autore-
gressive coefficient is ρ̂ = 0.503, and the volatility ι̂rs is estimated as the squared root of
the average of squared residual based on (28). Panel (a) of Figure 6.3 reports the distribu-
tion of the weighted long-run mean, ln ars, across French regions, and panel (b) reports the

38The model assumes a Markovian stationary stochastic process for the aggregate stochastic shock. Thus, only
the last event in the history of shocks matters, not the entire history. This implies that (pre-determined)
labor allocations before time t should not play a role. Furthermore, among production factors other than
labor, note that the purchase of materials at time t is a general equilibrium outcome, endogenous to the
contemporaneous realization of technological shocks; instead, the stock of structures is constant over time.
Consequently, taking into account the contemporaneous allocation of labor (other than region, sector and
time fixed effects) is the most conservative specification that is also admissible through the lens of the model.
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Table 12: Summary statistics for the dynamic process of ln(arst )

mean std.dev. p10 p50 p90

Long run mean ln ars 2.436 0.108 2.318 2.438 2.543
Long run standard deviation σrs 0.056 0.058 0.015 0.037 0.117

weighted long-run standard deviation, σrs, where weights reflect sector-level employment in
each region.

E.8 Intertemporal equilibrium parameters

For the intertemporal equilibrium, three parameters are of particular importance: ν (the
dispersion of idiosyncratic tastes for jobs); β (the discounting parameter); and ζjn (the
mobility costs of switching from job j to n.

To estimate these parameters, we rely on the French administrative employer-employee
dataset Declaration Annuelle des Donnees Sociales published by INSEE. This dataset pro-
vides information on the employees and their wage in a given job n (i.e., region r, sector
s, and occupation/skill level k) in a given year t. Moreover, it contains information on the
same employees on their job j in the previous year t − 1 as well as the wage earned then.
Using data for the pair of consecutive years of 2009-2010 and 2012-2013, we can compute
transitions between every pair of jobs j and n as well as associated wages for about mm. 27
workers per year.

E.9 Estimation of moving costs ζjn

We estimate moving costs based on the methodology proposed by Artuç and McLaren (2015)
that is based on equation (3). We calculate the implied moving costs directly from data
on movers over the period 2009-2010 as well as 2012-2013. Specifically, we consider gross
migration flows between the consecutive pair of mentioned years, t and t+1, and pair of jobs
of origin j and destination i, maj,i

t for three types of age groups (21-25 years, 26-45 years, and
46-65 years). Equation (3) multiplied by the number of workers in each job, la,it , motivates
the following estimating equation. First, write the right-hand side of the equation for movers
as an exponential of a log-linear index. In that index, consider ψa,i

t ≡ 1
ν
βEt

[
V̄ ai (Lt+1, Zt+1)

]
and ϕa,j

t ≡ ln
∑

k∈J e
1
ν (βEt[V̄ ak(Lt+1,Zt+1)]−ζaj,kt ) as fixed age-job-pair fixed effects specific to t.

Then, after introducing a mean-zero stochastic term εaj,it , we can re-express Equation (3)
as an exponential-form estimation equation that can be estimated using a Poisson Pseudo-
maximum Likelihood (PPML) estimator:

maj,i
t la,it = moversaj,it = exp(ψa,i

t + ϕa,j
t − ζaj,it /ν + εaj,it ). (63)

We obtain an estimate of ζaj,it /ν as the residual of a fixed-effects PPML regression. Since
this residual is only identified for all job-pairs with non-zero flows, we explain these moving
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Table 13: Linear regression explaining job-to-job moving costs

ζ̂aj,i2009/ν ζ̂aj,i2012/ν

log(Distance) 1.270∗∗∗ 1.260∗∗∗

(0.0102) (0.0109)

Switch Skill 4.362∗∗∗ 4.779∗∗∗

(0.0240) (0.0240)

Constant 5.970∗∗∗ 4.288∗∗∗

(0.0114) (0.0109)
Fixed effects Sector-pair Sector-pair

Observations 9,442 8,864
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

costs using the following regression

ζ̂aj,it /ν = β1 ln(Distance
rr′) + β2I (k ̸= k′) + βss′ + εaj,it ,

and predict moving costs for those cells with unobserved movers using the log great-circle
distance between the centroids of regions r and r′ (being zero for r = r′), ln(Distancerr

′
), an

binary indicator for switching skills and sector-pair fixed effects. The latter step of explaining
moving costs with observables allows us to obtain distinct moving costs for a larger set of
the pairs of 2, 156 jobs from one year to another. We present the regression for the moving
costs in Table 13.

In order to obtain an estimate of ν, we follow Artuç and McLaren (2015) and use the
structural interpretation of the fixed effects to isolate 1/ν:

ϕa,j
t = β/νEt

[
V̄ aj (Lt+1, Zt+1)

]
and use the estimates of the first stage along with information on job-year-specific real

wages to estimate the following regression:

Ψa,i
t = αa

0 + 1/ν × β × u(wi
t/P

i
t ) + εa,it ,

where Ψa,i
t = ϕa,i

t + β × ψa,i
t − β × log(Li,a

t+1) and real wages are instrumented using lagged
values. Moreover, we fix the discounting parameter at a value of β = 0.95. Real wages are
obtained from the average job-age spell-specific nominal wage rates reported in the employer-
employee data and the price indices of output estimated before and aggregated using sectoral
consumption shares as weights.

Table 3 provides descriptive statistics of the estimated moving costs. Job-to-job flows
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between 2012 and 2013 indicate that, on average, 98.2% of the agents in a given job do
not move to other jobs from one year to another. Overall, moving costs are smaller for
changing occupation only within the same region and sector. In the subsample below the
10th percentile of the moving-cost distribution, moving costs are higher for changing the
sector and they are slightly higher for changing the region. In the rest of the distribution,
mobility frictions increase when changing the sector, while the cost of moving between regions
or occupations remain flat. To interpret the magnitude of moving costs, rearrange the policy
(3)

moving costjn = βE[valuen − valuej]− ν ln

(
moversjn

stayersjj

)
,

take a steady-state perspective, in which certainty equivalence holds and the value of a job
is given by the current utility divided by the discount rate 1− β

moving costjn =
β

1− β
(utilityn − utilityj)− ν ln

(
moversjn

stayersjj

)
,

and finally make use of the log-utility assumption, to substitute for real wages:

moving costjn =
β

1− β
ln

(
real wagen

real wagej

)
− ν ln

(
moversjn

stayersjj

)
.

Given β = 0.95, ν = 4.5281 and a fraction of stayers equal to 98.2% on average, moving
costs are as large as several times the log difference in observed real wages between origin
and destination in the data, and this level is further inflated by subtracting the log of a small
ratio of movers to stayers.

Two remarks are worthy. First, PPML estimation identifies the dispersion of moving
costs from observed flows. Although the method naturally accommodates zeros, the esti-
mated levels of moving costs are informative the greater the observed fraction of movers that
correspond to the lower percentiles of the distribution. Second, in the estimation (and in
our description above) we did not consider differences in moving costs by age spell. In this
way, we load all the differential behavior between age cohorts to endogenous channels of the
model only (old agents have a lower continuation value due to a shorter expected lifetime
time) and not to exogenous differences in moving costs.
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